Detecting medically important biomarkers in complex biological samples without prior treatment or extraction poses a major challenge in biomedical analysis. Electrochemical methods, specifically electrochemiluminescence (ECL), show potential due to their high sensitivity, minimal background noise, and straightforward operation. This study investigates the ECL performance of screen-printed electrodes (SPEs) modified with the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives for dopamine (DA) detection.
View Article and Find Full Text PDFAntifouling properties are crucial for enhancing the longevity and functionality of biomedical implants, drug delivery systems, and biosensors. Zwitterionic polymers are renowned for their exceptional surface hydration and charge neutrality, which effectively resist biomolecular adsorption and protein attachment. We propose an innovative approach to develop zwitterion-like antifouling surfaces by chelating divalent cations with anionic poly(3,4-ethylenedioxythiophene) (PEDOT) films, specifically PEDOT-PO and PEDOT-COOH.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
The sluggish catalytic kinetics of nonprecious metal-based electrocatalysts often hinder them from achieving efficient hydrogen evolution reactions (HERs). Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been promising materials for various electrochemical applications. Nevertheless, previous studies have demonstrated that PEDOT coatings can be detrimental to HER performance.
View Article and Find Full Text PDFThe zwitterionic groups possess strong dipole moments, leading to inter- or intrachain interactions among zwitterionic polymers. This study aims to demonstrate the interaction of polyzwitterions poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and poly(carboxybetaine methacrylate) (PCBMA) with electrified surfaces, despite their electrically neutral nature. We studied the adsorption of polyzwitterions and their monomers on electrified surfaces by using an electrochemical quartz crystal microbalance with dissipation (EQCM-D).
View Article and Find Full Text PDFThe poly(3,4-ethylenedioxythiophene) (PEDOT) interface, renowned for its biocompatibility and intrinsic conductivity, holds substantial potential in biosensing and cellular modulation. Through strategic functionalization, PEDOT derivatives can be adaptable for multifaceted applications. Notably, integrating phosphorylcholine (PC) groups into PEDOT, mimicking the hydrophilic headgroups from cell membranes, confers exceptional antifouling properties on the coating.
View Article and Find Full Text PDFThe efficient removal of gas bubbles is essential to reduce the reaction overpotential and improve the electrode stability in the hydrogen evolution reaction (HER). To address this challenge, the current study combines hydrophilic functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) with colloidal lithography to create superaerophobic electrode surfaces. The fabrication process involves the use of polystyrene (PS) beads with varying sizes (100, 200, and 500 nm) as hard templates and the electropolymerization of EDOTs with hydroxymethyl (EDOT-OH) and sulfonate (EDOT-SuNa) functional groups.
View Article and Find Full Text PDFConducting polymers (CPs) have gained attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials. To achieve better performance and broaden bioelectronics applications, the surface modification of soft zwitterionic polymers with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. This feature article emphasizes the antifouling properties of zwitterionic CPs, accompanied by their molecular synthesis and surface modification methods and an analysis of the interfacial phenomenon.
View Article and Find Full Text PDFConducting polymers (CPs) are a category of polymeric materials with conjugated main chains. The characteristic electrical and optical properties of CPs can be fine-tuned through controlling the doping states of CPs. Because of their long-term stability in water, CPs have been demonstrated as electroactive biointerfaces and electrode materials especially in aqueous environments.
View Article and Find Full Text PDFConducting polymers (CPs) are of great interests to researchers around the world in biomedical applications owing to their unique electrical and mechanical properties. Besides, they are easy to fabricate and have long-term stability. These features make CPs a powerful building block of modern biomaterials.
View Article and Find Full Text PDFA hydrogel surface with a nano-phase-separated structure was successfully fabricated by grafting a fluorine-containing polymer using activators regenerated by electron transfer atom transfer radical polymerisation (ARGET ATRP). The modified hydrogel surface exhibits water repellency and high elasticity with maintaining transparency.
View Article and Find Full Text PDFElectrochemical techniques are highly sensitive and label-free sensing methods for the detection of various biomarkers, toxins, or pathogens. An ideal sensing element should be electroconductive, nonfouling, and readily available for conjugation of ligands. In this work, we have developed a facile, one-step electrodeposition method based on pyrogallol polymerization for preparation of a nonfouling and biotinylated surface on indium tin oxide (ITO).
View Article and Find Full Text PDFThe surface modification of soft zwitterionic polymer brushes with antifouling properties represents a facile approach to enhancing the performance of bioelectronics. Ionic strength and applied potentials play a crucial role in controlling polymer brushes' conformation and hydration states. In this study, we quantitatively investigated and compared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(sulfobetaine methacrylate) (PSBMA) brushes at different salt concentrations and applied surface potentials.
View Article and Find Full Text PDFAn electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT)/screen-printed reduced graphene oxide (rGO)-chitosan (CS) bilayer material was coated on carbon cloth to form electrodes for gel-electrolyte flexible supercapacitors. The conductive polymer and carbon-based materials mainly contribute pseudocapacitance (PC) and electrical double-layer capacitance (EDLC), respectively. The high porosity and hydrophilicity of the PEDOT/rGO-CS bilayer material offers a large contact area and improves the contact quality for the gel electrolyte, thereby enhancing the capacitive performance.
View Article and Find Full Text PDFIn this study, we demonstrated an electrochemical aptasensor for calmodulin (CaM) detection and the peptide sequence (YWDKIKDFIGG) is obtained from in vitro ribosome display selection. To immobilize this peptide probe on the electrode surface, cystine was incorporated at the end of this peptide sequence. After a maleimide-functionalized poly(3,4-ethylenedioxythiophene), poly(EODT-MI), film was electropolymerized on the electrode, the peptide probe was immobilized through thiol-ene conjugation with the cystine end.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) has been widely used for bioanalysis because it provides a high sensitivity for detecting analytes of ultralow concentrations. However, the clinical application of a 2D SERS-active substrate remains challenging because of the difficulty of obtaining accurate quantification, especially at low concentration. In this study, we proposed an analytical method that integrates an optimized sample mapping strategy with an electrochemical SERS (EC-SERS) technique to resolve this problem.
View Article and Find Full Text PDFZwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) is an effective electronic material for bioelectronics because it exhibits efficient electrical trade-off and diminishes immune response. To promote the use of zwitterionic PEDOTs in bioelectronic devices, especially for cell alignment control and close electrocoupling, features such as tunable interaction of PEDOTs with proteins/cells and spatially modulating cell behavior are required. However, there is a lack of reliable methods to assemble zwitterionic EDOTs with other functionalized EDOT materials, having different polarities and oxidation potentials, to prepare PEDOTs with the aforementioned surface properties.
View Article and Find Full Text PDFA conductive polymer thin film having choline phosphate as the side group was prepared. Quartz crystal microbalance (QCM) was employed to evaluate the adsorption of the model protein, bovine serum albumin (BSA), on the films deposited on indium tin oxide (ITO) electrodes. Cell adsorption on the film was evaluated by a fibroblast NIH3T3.
View Article and Find Full Text PDFIn this study, a nanocomposite coating composed of polydopamine, functionalized poly(3,4-ethylenedioxythiophene) (PEDOT), and silver nanoparticles (AgNPs) was synthesized through layer-by-layer deposition. Biomimitic polydopamine and hydroxyl-functionalized PEDOT were used to enhance the adhesion strength. The deposition of PEDOT functionalized with zwitterionic phosphorylcholine can contribute to the antifouling property.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2019
Conducting polymers are considered to be favorable electrode materials for implanted biosensors and bioelectronics, because their mechanical properties are similar to those of biological tissues such as nerve and brain tissues. However, one of the primary challenges for implanted devices is to prevent the unwanted protein adhesion or cell binding within biological fluids. The nonspecific adsorption generally causes the malfunction of implanted devices, which is problematic for long-term applications.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2019
Neural tissue engineering has emerged as a promising technology to cure neural damages. Although various synthetic polymers with good biocompatibility and biodegradability have been adopted as candidate materials for scaffolds, most of them require the incorporation of biomolecules or conductive materials to promote the growth of long axons. Herein we demonstrate for the first time a unique peptide-based polyelectrolyte that is ionically conductive and contains a neurotransmitter, glutamic acid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
In response to recent developments for applying conducting polymers on various biomedical applications, the development of characterization techniques for evaluating the states of conducting polymers in liquids is beneficial to the applications of these materials. In this study, we propose a platform using electrochemical surface-enhanced Raman scattering (EC-SERS) technology, which allows a direct measurement of the redox states of conducing polymers in liquids. A thiophene-based conducting polymer, hydroxymethyl poly(3,4-ethylenedioxythiophene) or poly(EDOT-OH), was used to demonstrate this concept.
View Article and Find Full Text PDFFor electrified surfaces, ions and applied potentials play major roles in controlling the surface properties. Antifouling materials such as poly(ethylene glycol) and zwitterionic polymers that resist nonspecific protein binding and cell adhesion play a key role in various biomedical applications. In this study, we investigated and compared the antifouling properties of conducting polymers grafted with oligo(ethylene glycol) groups and phosphorylcholine (PC) groups in the presence of different anions and applied potentials.
View Article and Find Full Text PDFCorrection for 'In vitro selection of electrochemical peptide probes using bioorthogonal tRNA for influenza virus detection' by Tara Bahadur K. C. et al.
View Article and Find Full Text PDF