Motivated by an age-structured population model over two patches that assumes constant dispersal rates, we derive a modified model that allows density-dependent dispersal, which contains both nonlinear dispersal terms and delayed non-local birth terms resulted from the mobility of the immature individuals between the patches. A biologically meaningful assumption that the dispersal rate during the immature period depends only on the mature population enables us investigate the model theoretically. Well-posedness is confirmed, criteria for existence of a positive equilibrium are obtained, threshold for extinction/persistence is established.
View Article and Find Full Text PDFThe discrepancy in the turnover of cells and virus in different organs or viral reservoirs necessitates the investigation of multiple compartments within a host. Establishing a multi-compartmental structure that describes the complexity of various organs, where viral infection comprehensively proceeds, provides a modeling framework for exploring the effect of spatial heterogeneity on viral dynamics. To successfully suppress within-host viral replication, it is imperative to determine drug administration during therapy, particularly for a combination of antiretroviral drugs.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2011
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive.
View Article and Find Full Text PDFIn this paper, we propose a novel model, a delayed transiently chaotic neural network (DTCNN), and numerically confirm that the model performs better in finding the global minimum for the traveling salesman problem (TSP) than the traditional transiently chaotic neural network. The asymptotic stability and chaotic behavior of the dynamical system with time delay are fully discussed. We not only theoretically prove the existence of Marotto's chaos for the delayed neural network without the cooling schedule by geometrically constructing a transversal homoclinic orbit, but we also discuss the stability of nonautonomous delayed systems using LaSalle's invariance principle.
View Article and Find Full Text PDFRecent functional imaging studies demonstrated that brain exhibit coherent, synchronized activities during resting state and the dynamics may be impaired in various psychiatric illnesses. In order to investigate the change of neural dynamics in bipolar disorder, we used a new nonlinear measurement "similarity index" to analyze the magnetoencephalography (MEG) recordings and test the hypothesis that there are synchronization changes within different frequency bands in the frontal cortex of patients with bipolar disorder. Ten patients with bipolar I disorder during euthymic phase and ten normal controls underwent 2min eye-closed resting recording with a whole-head 306-channel MEG system.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2007
We present an adaptive similarity-based approach to detect generalized synchronization (GS) with n:m phase synchronization (PS), where n and m are integers and one of them is 1. This approach is based on the similarity index (SI) and Gaussian mixture model with the minimum description length criterion. The clustering method, which is shown to be superior to the closeness and connectivity of a continuous function, is employed in this study to detect the existence of GS with n:m PS.
View Article and Find Full Text PDFFrequency-dependent modulation between neuronal assemblies may provide insightful mechanisms of functional organization in the context of neural connectivity. We present a conjoined time-frequency cross mutual information (TFCMI) method to explore the subtle brain neural connectivity by magnetoencephalography (MEG) during a self-paced finger lifting task. Surface electromyogram (sEMG) was obtained from the extensor digitorum communis.
View Article and Find Full Text PDFIn this study flashing stimuli, such as digits or letters, are displayed on a LCD screen to induce flash visual evoked potentials (FVEPs). The aim of the proposed interface is to generate desired strings while one stares at target stimulus one after one. To effectively extract visually-induced neural activities with superior signal-to-noise ratio, independent component analysis (ICA) is employed to decompose the measured EEG and task-related components are subsequently selected for data reconstruction.
View Article and Find Full Text PDFObjective: We investigated the variation in dimensionality (D2) of neuromagnetic activity over the primary sensorimotor cortex (SM1) in healthy adults performing motor tasks of different difficulty.
Methods: Magnetoencephalography (MEG) was used to record neuromagnetic activity during self-paced, brisk unimanual finger extension at a rate of 1 and 2 Hz using the index finger of the dominant and non-dominant hands in 16 healthy subjects. Motor task difficulty was rated by the relative difference in time measurement between 1 and 2 Hz finger movements of both hands.
Postmovement beta-rebounds induced by different intermovement intervals were investigated using magnetoencephalography in 14 healthy participants to test the hypothesis that postmovement motor cortical deactivation over the primary motor cortex depends on movement-related cognitive demands. Shorter latency and lower amplitude in postmovement beta-rebounds over the contralateral primary motor cortex were noted in the short-movement interval movement (repetitive finger lifting). Greater latency span of postmovement beta-rebounds jittering using single-trial analysis in the long-movement interval movement (discrete finger lifting) was observed.
View Article and Find Full Text PDFThe present study used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the orthographic and phonological processing of Chinese characters. Four tasks were devised, including one homophone judgment and three physical judgments of characters, pseudo-characters, and Korean-like nonsense figures. While the left occipitotemporal region, left dorsal processing stream, and right middle frontal gyrus constitute a network for orthographic processing, the left premotor gyrus, left middle/inferior frontal gyrus, supplementary motor area (SMA), and the left temporoparietal region work in concert for phonological processing.
View Article and Find Full Text PDFWe study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system.
View Article and Find Full Text PDF