Aging is associated with genome-wide changes in DNA methylation in humans, facilitating the development of epigenetic age prediction models. However, most of these models have been trained primarily on European-ancestry individuals, and none account for the impact of methylation quantitative trait loci (meQTL). To address these gaps, we analyzed the relationships between age, genotype, and CpG methylation in 3 understudied populations: central African Baka (n = 35), southern African ‡Khomani San (n = 52), and southern African Himba (n = 51).
View Article and Find Full Text PDFHow we teach human genetics matters for social equity. The biology curriculum appears to be a crucial locus of intervention for either reinforcing or undermining students' racial essentialist views. The Mendelian genetic models dominating textbooks, particularly in combination with racially inflected language sometimes used when teaching about monogenic disorders, can increase middle and high school students' racial essentialism and opposition to policies to increase equity.
View Article and Find Full Text PDFDNA methylation-derived epigenetic clocks offer the opportunity to examine aspects of age acceleration (ie, the difference between an individual's biological age and chronological age), which vary among individuals and may better account for age-related changes in cognitive function than chronological age. Leveraging existing ambulatory cognitive assessments in daily life from a genetically diverse sample of 142 adults in midlife, we examined associations between 5 measures of epigenetic age acceleration and performance on tasks of processing speed and working memory. Covarying for chronological age, we used multilevel models to examine associations of epigenetic age acceleration (Horvath 1, Horvath 2, Hannum, PhenoAge, and GrimAge clocks) with both average level and variability of cognitive performance.
View Article and Find Full Text PDFTranscriptome-wide association studies (TWASs) are a powerful approach to identify genes whose expression is associated with complex disease risk. However, non-causal genes can exhibit association signals due to confounding by linkage disequilibrium (LD) patterns and eQTL pleiotropy at genomic risk regions, which necessitates fine-mapping of TWAS signals. Here, we present MA-FOCUS, a multi-ancestry framework for the improved identification of genes underlying traits of interest.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2022
Over the past 50 years, geneticists have made great strides in understanding how our species' evolutionary history gave rise to current patterns of human genetic diversity classically summarized by Lewontin in his 1972 paper, 'The Apportionment of Human Diversity'. One evolutionary process that requires special attention in both population genetics and statistical genetics is admixture: gene flow between two or more previously separated source populations to form a new admixed population. The admixture process introduces ancestry-based structure into patterns of genetic variation within and between populations, which in turn influences the inference of demographic histories, identification of genetic targets of selection and prediction of complex traits.
View Article and Find Full Text PDFThe fate of hunting and gathering populations following the rise of agriculture and pastoralism remains a topic of debate in the study of human prehistory. Studies of ancient and modern genomes have found that autochthonous groups were largely replaced by expanding farmer populations with varying levels of gene flow, a characterization that is influenced by the almost universal focus on the European Neolithic. We sought to understand the demographic impact of an ongoing cultural transition to farming in Southwest Ethiopia, one of the last regions in Africa to experience such shifts.
View Article and Find Full Text PDFPosttraumatic stress disorder (PTSD) is a chronic and disabling psychiatric disorder prevalent in military veterans. Epigenetic mechanisms have been implicated in the etiology of PTSD, with DNA methylation being the most studied to identify novel molecular biomarkers associated with this disorder. We performed one of the largest single-sample epigenome-wide association studies (EWAS) of PTSD to date.
View Article and Find Full Text PDFDespite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection, there is limited understanding of genes and pathways that contribute to COVID-19. Here, we integrate a genome-wide association study of COVID-19 hospitalization (7,885 cases and 961,804 controls from COVID-19 Host Genetics Initiative) with mRNA expression, splicing, and protein levels (n = 18,502). We identify 27 genes related to inflammation and coagulation pathways whose genetically predicted expression was associated with COVID-19 hospitalization.
View Article and Find Full Text PDFQuestions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal.
View Article and Find Full Text PDFDespite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection, there is limited understanding of genes and pathways that contribute to COVID-19. Here, we integrated a genome-wide association study of COVID-19 hospitalization (7,885 cases and 961,804 controls from COVID-19 Host Genetics Initiative) with mRNA expression, splicing, and protein levels (n=18,502). We identified 27 genes related to inflammation and coagulation pathways whose genetically predicted expression was associated with COVID-19 hospitalization.
View Article and Find Full Text PDFEurope has played a major role in dog evolution, harbouring the oldest uncontested Palaeolithic remains and having been the centre of modern dog breed creation. Here we sequence the genomes of an Early and End Neolithic dog from Germany, including a sample associated with an early European farming community. Both dogs demonstrate continuity with each other and predominantly share ancestry with modern European dogs, contradicting a previously suggested Late Neolithic population replacement.
View Article and Find Full Text PDFAging is associated with widespread changes in genome-wide patterns of DNA methylation. Thousands of CpG sites whose tissue-specific methylation levels are strongly correlated with chronological age have been previously identified. However, the majority of these studies have focused primarily on cosmopolitan populations living in the developed world; it is not known if age-related patterns of DNA methylation at these loci are similar across a broad range of human genetic and ecological diversity.
View Article and Find Full Text PDFFarming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe.
View Article and Find Full Text PDFBackground: A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on.
View Article and Find Full Text PDF