Publications by authors named "Shyamalava Mazumdar"

Article Synopsis
  • The study investigates how the bacterium S. maltophilia resists and detoxifies arsenic, despite the overall limited understanding in this area.
  • Advanced analytical techniques revealed that S. maltophilia shows minimal changes on its cell surface when exposed to arsenic, but it does accumulate arsenic internally.
  • The research found that S. maltophilia activates various protective enzymes and possesses specific genes that facilitate arsenic reduction and detoxification, highlighting a complex molecular mechanism for bioremediation.
View Article and Find Full Text PDF

Understanding structure-function relationships in proteins is pivotal in their development as industrial biocatalysts. In this regard, rational engineering of protein active site access pathways and various tunnels and channels plays a central role in designing competent enzymes with high stability and enhanced efficiency. Here, we report the rational evolution of a thermostable cytochrome P450, CYP175A1, to catalyze the C-H activation reaction of longer-chain alkanes.

View Article and Find Full Text PDF

Growing industrialization and unchecked release of industrial waste, including heavy metals have resulted in disastrous effects on environment. Considering the problem of heavy metal pollution, the present research was designed to study the bioremediation of chromium, a highly toxic and prominent heavy metal pollutant by Acinetobacter junii strain b2w isolated from the Mithi river, Mumbai, India. The bacterial isolate could grow without affecting its growth kinetics up to a concentration of 200 ppm of chromium and showed resistance towards 400 ppm of chromium.

View Article and Find Full Text PDF

The role of the shape of the nanostructure on the antibacterial effects of ZnO nanodisks has been investigated by detailed mass spectrometry-based proteomics along with other spectroscopic and microscopic studies on E. coli. The primary interaction study of the E.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers cloned a thermostable cytochrome P450 enzyme, CYP175A1, from Thermus thermophilus, noting its high thermal stability (Tm of 88°C) which suggests it could be useful in industrial applications as a biocatalyst.
  • Site-saturation mutagenesis targeting the tyrosine 68 residue revealed mutants with enhanced thermostability and altered substrate specificity; for example, Y68K showed improved interaction with myristic acid, while Y68R effectively catalyzed reactions with cholesterol.
  • The study demonstrates that modifying a single amino acid in the enzyme’s substrate binding pocket can significantly impact its binding preferences and catalytic activity, emphasizing the potential for engineering enzymes with
View Article and Find Full Text PDF

The effect of the mutation at the core of the ferritin nanocage (apo-rHLFr) on the uptake of IrCp* has been investigated by structural and spectroscopic methods. Site-specific mutations of two polar residues viz., Asp38 and Arg52 were investigated.

View Article and Find Full Text PDF

Covalent linkage between the single-walled carbon nanotube (SWCNT) and CYP101 through a specific site of the enzyme can provide a novel method of designing efficient enzyme electrodes using this prototype cytochrome P450 enzyme. We have chemically modified the SWCNT with linker 4-carboxy phenyl maleimide (CPMI) containing maleimide functional groups. The enzyme was covalently attached on to the SWCNT through the maleimide group of the linker (CPMI) to the thiolate group of the surface exposed Cys 58 or Cys 136 of the CYP101 forming a covalently immobilized protein on the nanotube.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the pentapeptide NHSFM, derived from cytochrome c oxidase, affects the maturation of its binuclear purple CuA center, using both experimental and computational techniques.
  • - It was found that the copper ion binds to the pentapeptide with a strong affinity, forming a complex that showcases pH-dependent behavior and changes in metal-ligand bond distances.
  • - Additionally, simulations indicate that the binding of the copper causes the peptide's backbone to become more compact and rigid, suggesting that this interaction helps in coordinating the uptake of more copper ions within the protein.
View Article and Find Full Text PDF

Designing metal complexes as functional models for metalloenzymes remains one of the main targets in synthetic bioinorganic chemistry. Furthermore, the utilization of the product(s) derived from the catalytic reaction for subsequent organic transformation that occurs in biological systems is an even more difficult challenge for biochemists. Urease, the most efficient enzyme known, catalyzes the hydrolysis of urea and it contains an essential dinuclear Ni cluster in the active site.

View Article and Find Full Text PDF

The heterotrimeric kinesin-2 consists of two distinct motor subunits and an accessory protein, KAP, which binds to the coiled-coil stalk domains and one of the tail domains of the motor subunits. Genetic studies revealed that KAP is essential for the kinesin-2 functions in cilia, flagella, and axon. However, the structural significance of the KAP binding on kinesin-2 assembly and stability is not known.

View Article and Find Full Text PDF

Association between two motor subunits through the rod/stalk domain enables molecular motors to walk processively on protein filaments. Previous studies suggested that structural flexibility in the coiled-coil stalk of kinesins is essential for processive runs. The stalk of heterotrimeric kinesin-2, a comparatively less processive motor, is unstable at ambient temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Three stable copper complexes of peptides were prepared from the cytochrome c oxidase subunit, showing unique ligation patterns and spectroscopic properties.
  • The copper(ii) peptide complexes exhibited uncommon type-2 EPR spectra, indicating unusual charge transfer and coordination geometry around the copper ion.
  • The findings reveal new insights into stable copper complex models that mimic protein intermediates involved in enzyme function, showcasing novel spectroscopic behaviors not previously reported.
View Article and Find Full Text PDF

The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear.

View Article and Find Full Text PDF

The thermostable nature of CYP175A1 enzyme is of potential interest for the biocatalysis at ambient temperature or at elevated temperature under environmentally benign conditions. Although little is known about the substrate selectivity of this enzyme, the biocatalytic activities of CYP175A1 on different substituted naphthalenes have been studied in oxidative pathway, and the effect of the substituent on the reaction has been determined. The enzyme first acts as a peroxygenase to convert these substituted naphthalenes to the corresponding naphthols, which subsequently undergo in-situ oxidative dimerization to form dyes of different colors possibly by the peroxidase-type activity of CYP175A1.

View Article and Find Full Text PDF

We report the use of a molecular peroxidase mimic biuret-Fe-TAML for chemoselective labeling of proteins and the subsequent visual detection (<0.1 pmoles) of the conjugate in a polyacrylamide gel by catalytic signal amplification. Use of this probe in activity based protein profiling (ABPP) of serine proteases is also demonstrated.

View Article and Find Full Text PDF

Detailed spectroscopic and kinetic studies of incorporation of copper ion in the wild type (WT) and the D111AA (AA = K, N, or E) mutants of the metal ion binding site of the soluble fragment of subunit II of cytochrome c oxidase from Thermus thermophilus (TtCuA) showed the formation of at least two distinct intermediates. The global analyses of the multiwavelength kinetic results suggested a four-step reaction scheme involving two distinct intermediates in the pathway of incorporation of copper ions into the apoprotein forming the purple dinuclear CuA. An early intermediate similar to the red copper binding proteins was detected in the WT as well as in all the mutants.

View Article and Find Full Text PDF

The role the axial methionine plays in the conformational properties and thermostability of the heme active site has been investigated with the help of site-specific mutations at the axial Met69 position with His (M69H) and Ala (M69A) in thermostable cytochrome c(552) from Thermus thermophilus. Detailed circular dichroism, direct electrochemistry, and other spectroscopic studies have been employed to investigate the thermally induced and GdnHCl-induced unfolding properties of the heme active site of the wild type and the mutants of cytochrome c(552). We observed an unusually high thermodynamic and thermal stability of the M69A mutant compared to that of wild-type cytochrome c(552).

View Article and Find Full Text PDF

Definition: Kinesin-2 refers to the family of motor proteins represented by conserved, heterotrimeric kinesin-II and homodimeric Osm3/Kif17 class of motors.

Background: Kinesin-II, a microtubule-based anterograde motor, is composed of three different conserved subunits, named KLP64D, KLP68D and DmKAP in Drosophila. Although previous reports indicated that coiled coil interaction between the middle segments of two dissimilar motor subunits established the heterodimer, the molecular basis of the association is still unknown.

View Article and Find Full Text PDF

The catalytic activity of CYP175A1 toward monooxygenation of saturated and monounsaturated fatty acids of various chain lengths (C16-C24) has been investigated to assess the enzymatic properties of this orphan thermostable cytochrome P450 enzyme. The results showed that the enzyme could catalyze the reaction of monounsaturated fatty acids but not of saturated fatty acids. The product analyses using ESI-MS and GC-MS revealed an important regioselectivity in the CYP175A1 catalyzed monooxygenation of the monoenoic fatty acids depending on the ethylenic double bond (C═C) configuration.

View Article and Find Full Text PDF

The gas-phase peptide ion fragmentation chemistry is always the center of attraction in proteomics to analyze the amino acid sequence of peptides and proteins. In this work, we describe the formation of an anomalous fragment ion, which corresponds to the selective deletion of the internal lysine residue from a series of lysine containing peptides upon collisional activation in the ion trap. We detected several water-loss fragment ions and the maximum number of water molecules lost from a particular fragment ion was equal to the number of lysine residues in that fragment.

View Article and Find Full Text PDF

The Electrospray Ionization (ESI) is a soft ionization technique extensively used for production of gas phase ions (without fragmentation) of thermally labile large supramolecules. In the present review we have described the development of Electrospray Ionization mass spectrometry (ESI-MS) during the last 25 years in the study of various properties of different types of biological molecules. There have been extensive studies on the mechanism of formation of charged gaseous species by the ESI.

View Article and Find Full Text PDF

A model-free approach has been used to study the association of peptides onto multiwalled carbon nanotubes (MWCNT) in aqueous solution at ambient pH to understand the molecular basis of interaction of the peptides with MWCNT. The peptides obtained by tryptic digestion of cytochrome P450cam from P. putida were allowed to interact with MWCNT, and several peptides were found to bind to the nanotube leading to formation of stable homogeneous dispersion of the bionano conjugates of MWCNT.

View Article and Find Full Text PDF