Publications by authors named "Shyam S Bayya"

There are limited fiber-based single-mode laser sources over the visible and near infrared range. Nonlinear conversion through four-wave mixing in photonic crystal fibers allows for the generation of new wavelengths far from a pump wavelength. Utilizing an all-fiber spliced configuration, we convert 1064 nm light into a W-level signal in the 750 nm - 820 nm spectral region.

View Article and Find Full Text PDF

Negative curvature fibers have been gaining attention as fibers for high power infrared light. Currently, these fibers have been made of silica glass and infrared glasses solely through stack and draw. Infrared glasses' lower softening point presents the opportunity to perform low-temperature processing methods such as direct extrusion of pre-forms.

View Article and Find Full Text PDF

Femtosecond Z-scan measurements have been performed on six window materials at 772, 1030, and 1550 nm. Measurements of the nonlinear refractive index are presented for reference materials, fused silica and BK7 and four near-infrared window materials, multispectral ZnS (CLEARTRAN), aluminum oxynitride (AlON), spinel (MgAl2O4) ceramic, and barium gallogermanate (BGG) glass.

View Article and Find Full Text PDF

Barium gallogermanate (BGG) glasses are currently being explored as a viable low cost material for numerous U.S. defense and commercial visible-infrared window applications.

View Article and Find Full Text PDF

A modified Barium Gallo-Germanate glass has been developed as an exit window for high energy lasers operating in the mid-infrared wavelength region. All the physical properties, for application as a window for high energy laser systems have been measured. Absorption loss and thermo-optic coefficient were identified as key in developing the Barium Gallo-Germanate glass for high energy laser applications.

View Article and Find Full Text PDF

Gallogermanate glasses are the subject of intense study as a result of their unique combination of physical and optical properties, including transmission from 0.4 to beyond 5.0 microm.

View Article and Find Full Text PDF