Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde.
View Article and Find Full Text PDFMitoxantrone was efficiently encapsulated within cucurbit[8]uril in a 2:1 complex where the two mitoxantrone molecules were symmetrically located through both portals of a cucurbit[8]uril cage. The novel complex facilitates increased mitoxantrone uptake in mouse breast cancer cells and decreases the toxicity of the drug in healthy mice. In an orthotopic mouse model of metastatic breast cancer the complex still maintains anticancer activity compared to the free drug, yet provides a statistically significant increase in the survival of these mice compared to conventional mitoxantrone treatment.
View Article and Find Full Text PDFThe major covalent adduct formed between a C-labelled formaldehyde activated bis-amino mitoxantrone analogue (WEHI-150) and the hexanucleotide d(CGCGCG) has been isolated by HPLC chromatography and the structure determined by NMR spectroscopy. The results indicate that WEHI-150 forms one covalent bond through a primary amine to the N-2 of the G residue, with the polycyclic ring structure intercalated at the CpG/GpC site. Furthermore, the WEHI-150 aromatic ring system is oriented approximately parallel to the long axis of the base pairs, with one aliphatic side-chain in the major groove and the other side-chain in the minor groove.
View Article and Find Full Text PDFThe ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2.
View Article and Find Full Text PDFThe binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites.
View Article and Find Full Text PDF