Publications by authors named "Shyam H Kamble"

Kratom and cannabidiol products are used to self-treat a variety of conditions, including anxiety and pain, and to elevate mood. Research into the individual pharmacokinetic properties of commercially available kratom and cannabidiol products has been performed, but there are no studies on coadministration of these products. Surveys of individuals with kratom use history indicate that cannabidiol use is one of the strongest predictors of both lifetime and past month kratom use.

View Article and Find Full Text PDF

Background And Objectives: A wide variety of products containing cannabidiol (CBD) are available on the commercial market. One of the most common products, CBD oil, is administered to self-treat a variety of conditions. These oils are available as CBD isolate, broad-spectrum [all terpenes and minor cannabinoids except Δ-9-tetrahydrocannabinol (THC)], or full-spectrum (all terpenes and minor cannabinoids with THC < 0.

View Article and Find Full Text PDF

Mitragynine, an opioidergic alkaloid present in (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro.

View Article and Find Full Text PDF

Patients with chronic kidney disease (CKD) are at increased risk for adverse cardiovascular events. CKD is associated with increases in arterial stiffness, whereas improvements in arterial stiffness correlate with better survival. However, arterial stiffness is increased early in CKD, suggesting that there might be additional factors, unique to kidney disease, that increase arterial stiffness.

View Article and Find Full Text PDF

Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine.

View Article and Find Full Text PDF

Sigma-1 receptors are involved in pain modulation, particularly in cases of nerve injury and neuropathic pain. High-affinity ligands with improved pharmacokinetic profiles are needed to further investigate the properties of these receptors and their potential as a therapeutic target. The novel compound MCI-77 is one such selective sigma-1 receptor ligand, and the purpose of this study was to characterize its preclinical pharmacokinetic parameters.

View Article and Find Full Text PDF

Kratom (), a Southeast Asian tree, has been used for centuries in pain relief and mitigation of opium withdrawal symptoms. Mitragynine (MTG), the major kratom alkaloid, is being investigated for its potential to provide analgesia without the deleterious effects associated with typical opioids. Concerns have been raised regarding the active metabolite of MTG, 7-hydroxymitragynine (7HMG), which has higher affinity and efficacy at µ-opioid receptors than MTG.

View Article and Find Full Text PDF

Kratom alkaloids have mostly been evaluated for their opioid activity but less at other targets that could contribute to their physiological effects. Here, we investigated the in vitro and in vivo activity of kratom alkaloids at serotonin receptors (5-HTRs). Paynantheine and speciogynine exhibited high affinity for 5-HTRs and 5-HTRs, unlike the principal kratom alkaloid mitragynine.

View Article and Find Full Text PDF

Background And Objectives: 7-Hydroxymitragynine (7-HMG) is an oxidative metabolite of mitragynine, the most abundant alkaloid in the leaves of Mitragyna speciosa (otherwise known as kratom). While mitragynine is a weak partial µ-opioid receptor (MOR) agonist, 7-HMG is a potent and full MOR agonist. It is produced from mitragynine by cytochrome P450 (CYP) 3A, a drug-metabolizing CYP isoform predominate in the liver that is also highly expressed in the intestine.

View Article and Find Full Text PDF

Kratom, Korth., is being widely consumed in the United States for pain management and the reduction of opioid withdrawal symptoms. The central nervous system (CNS) active alkaloids of kratom, including mitragynine, 7-hydroxymitragynine, and numerous additional compounds, are believed to derive their effects through opioid receptor activity.

View Article and Find Full Text PDF

In this work we report the structure-activity relationships, binding properties, and metabolic stability studies of a series of benzo[]thiazol-2(3)one as sigma receptors (σRs) ligands. Specifically, to improve the metabolic stability of the cyclic amine fragment of our lead compound (), the metabolically unstable azepane ring was replaced with a 1-adatamantamine moiety. Within the synthesized analogs, compound had low nanomolar affinity for the σR ( = 7.

View Article and Find Full Text PDF

Background: In 2018, the Farm Bill mandated the United States Department of Agriculture to develop regulations governing the cultivation, processing, and marketing of industrial hemp. Industrial hemp is defined as Cannabis sativa L. with a total Δ-9-tetrahydrocannabinol (Δ-9-THC) content ≤0.

View Article and Find Full Text PDF

Resveratrol (RSV) is well known for its many beneficial activities, but its unfavorable physicochemical properties impair its effectiveness after systemic and topical administration; thus, several strategies have been investigated to improve RSV efficacy. With this aim, in this work, we synthesized a novel RSV triester with trolox, an analogue of vitamin E with strong antioxidant activity. The new RSV derivative (RSVTR) was assayed in vitro to evaluate its antioxidant and anti-glycation activity compared to RSV.

View Article and Find Full Text PDF

Kratom is widely consumed in the United States for self-treatment of pain and opioid withdrawal symptoms. Mitragynine is the most abundant alkaloid in kratom and is a μ-opioid receptor agonist. 7-Hydroxymitragynine (7-HMG) is a mitragynine metabolite that is a more potent and efficacious opioid than its parent mitragynine.

View Article and Find Full Text PDF

Speciociliatine is a minor indole alkaloid found in kratom, a southeast Asian medicinal plant, used for centuries to increase energy, enhance mood, and mitigate pain and opioid dependence. An ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated to quantify speciociliatine in rat plasma. The quantitation range was 3-600 ng/mL.

View Article and Find Full Text PDF

Sigma-1 receptors are found throughout the nervous system and play a role in regulating nociception. They are highly expressed in nerve injury, making them a potential target for the treatment of neuropathic pain. Although sigma-1 receptor antagonists have been shown to have anti-nociceptive and anti-allodynic effects, improved selectivity of these ligands is needed to further investigate their potential to treat neuropathic pain.

View Article and Find Full Text PDF

Most people start experimenting with tobacco products or e-cigarettes in early adolescence and become habitual smokers in late adolescence or adulthood. These studies investigated if exposure to tobacco smoke or nicotine during early and mid-adolescence affects nicotine intake in late adolescence and early adulthood. Male and female rats were exposed to tobacco smoke from low- and high-nicotine SPECTRUM cigarettes or nicotine (0.

View Article and Find Full Text PDF

Mitragynine is the most abundant psychoactive alkaloid derived from the leaves of (kratom), a tropical plant indigenous to regions of Southeast Asia. Mitragynine displays a moderate affinity to opioid receptors, and kratom is often self-prescribed to treat pain and/or opioid addiction. The purpose of this study was to investigate the safety and pharmacokinetic properties of mitragynine in the dog.

View Article and Find Full Text PDF

Corynantheidine, a minor alkaloid found in Mitragyna speciosa (Korth.) Havil, has been shown to bind to opioid receptors and act as a functional opioid antagonist, but its unique contribution to the overall properties of kratom remains relatively unexplored. The first validated bioanalytical method for the quantification of corynantheidine in rat plasma is described.

View Article and Find Full Text PDF

Selected indole-based kratom alkaloids were evaluated for their opioid and adrenergic receptor binding and functional effects, in vivo antinociceptive effects, plasma protein binding, and metabolic stability. Mitragynine, the major alkaloid in (kratom), had higher affinity at opioid receptors than at adrenergic receptors while the vice versa was observed for corynantheidine. The observed polypharmacology of kratom alkaloids may support its utilization to treat opioid use disorder and withdrawal.

View Article and Find Full Text PDF

The nonpeptide small molecule, MES207, exhibits 17-fold preferential binding to the neuropeptide FF receptor 1 (NPFFR1) over NPFFR2 and shows antagonist functionality at NPFF receptors. In order to further the development of MES207 as a NPFFR1 probe, an UPLC-MS/MS bioanalytical method was developed and validated to quantify MES207 in rat plasma for a linearity range of 3-200 ng/mL. The method was applied in the analysis of the plasma, brain, and urine samples collected during pharmacokinetic studies in healthy male and female Sprague Dawley rats.

View Article and Find Full Text PDF

In vitro cytochrome P450 inhibition of major kratom alkaloids: mitragynine (MTG), speciogynine (SPG), speciocilliatine (SPC), corynantheidine (COR), 7-hydroxymitragynine (7HMG) and paynantheine (PAY) was evaluated using human liver microsomes (HLMs) to understand their drug-drug interaction potential. CYP450 isoform-specific substrates of CYP1A2, 2C8, 2C9, 2C19, 2D6, and 3A4/5 were incubated in HLMs with or without alkaloids. Preliminary CYP450 inhibition (IC) data were generated for each of these isoforms.

View Article and Find Full Text PDF

Kratom (Mitragyna speciosa) is a psychoactive plant popular in the United States for the self-treatment of pain and opioid addiction. For standardization and quality control of raw and commercial kratom products, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ten key alkaloids, namely: corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine, mitragynine, mitraphylline, paynantheine, speciociliatine, and speciogynine. Chromatographic separation of diastereomers, or alkaloids sharing same ion transitions, was achieved on an Acquity BEH C18 column with a gradient elution using a mobile phase containing acetonitrile and aqueous ammonium acetate buffer (10mM, pH 3.

View Article and Find Full Text PDF

1. Terbinafine (TBF), a common antifungal agent, has been associated with rare incidences of hepatotoxicity. It is hypothesized that bioactivation of TBF to reactive intermediates and subsequent binding to critical cellular proteins may contribute to this toxicity.

View Article and Find Full Text PDF

1. Mitragynine is the major indole-based alkaloid of (kratom). Decoctions (teas) of the plant leaves have been used traditionally for cough, diarrhoea, pain, hypertension and for the treatment of opioid addiction.

View Article and Find Full Text PDF