Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAP) to understand the modulation of these inclusions in the ageing adult brain.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. A key pathological feature of the disease is the presence of heavily ubiquitinated protein inclusions. Both the unfolded protein response and the ubiquitin-proteasome system appear significantly impaired in patients and animal models of ALS.
View Article and Find Full Text PDFMonensin Sensitive 1 (Mon1) is a component of the Mon1:Ccz1 complex that mediates Rab5 to Rab7 conversion in eukaryotic cells by serving as a guanine nucleotide exchange factor for Rab7 during vesicular trafficking. We find that Mon1 activity modulates the complexity of Class IV dendritic arborization (da) neurons during larval development. Loss of Mon1 function leads to an increase in arborization and complexity, while increased expression, leads to reduced arborization.
View Article and Find Full Text PDFMonensin-sensitive 1 (Mon1) is an endocytic regulator that participates in the conversion of Rab5-positive early endosomes to Rab7-positive late endosomes. In , loss of leads to sterility as the mutant females have extremely small ovaries with complete absence of late stage egg chambers - a phenotype reminiscent of mutations in the insulin pathway genes. Here, we show that expression of many insulin-like peptides (ILPs) is reduced in mutants and feeding adults an insulin-rich diet can rescue the ovarian defects.
View Article and Find Full Text PDF