Publications by authors named "Shweta Nim"

Two series of piperazinyl-pyrrolo[1,2-]quinoxaline derivatives were prepared a Buchwald-Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of CaCdr1p and CaMdr1p transporters of overexpressed in a strain. In the initial screening of twenty-nine piperazinyl-pyrrolo[1,2-]quinoxaline derivatives, twenty-three compounds behaved as dual inhibitors of CaCdr1p and CaMdr1p. Only four compounds showed exclusive inhibition of CaCdr1p or CaMdr1p.

View Article and Find Full Text PDF

Aim: Resistance against antifungals used for Candida albicans (Ca) treatment is mediated by two multidrug transporters, Mdr1p and Cdr1p, which are of enormous interest to the development of modulators combined with antifungals.

Experimental: A set of chalcones was synthesized by condensation reactions in laboratory and was then subject to biological assays to evaluate the effects on different yeast strains.  Results: The obtained chalcones were screened using the checkerboard liquid chemosensitization assays.

View Article and Find Full Text PDF

Macrocyclic diterpenes were previously found to be able to modulate the efflux pump activity of Candida albicans multidrug transporters. Most of these compounds were jatrophanes, but only a few number of lathyrane-type diterpenes was evaluated. Therefore, the aim of this study was to evaluate the ability of nineteen structurally-related lathyrane diterpenes (1-19) to overcome the drug-efflux activity of Cdr1p and Mdr1p transporters of C.

View Article and Find Full Text PDF

Twenty-nine jatrophane esters (1-10, 12-30) and one lathyrane (11) diterpenoid ester isolated from Euphorbia species were evaluated for their capacity to inhibit drug-efflux activities of the primary ABC transporter CaCdr1p and the secondary MFS transporter CaMdr1p of Candida albicans, in yeast strains overexpressing the corresponding transporter. These diterpenoid esters were obtained from Euphorbia semiperfoliata (1-10), E. insularis (11), and E.

View Article and Find Full Text PDF

The ABC (ATP-Binding Cassette) transporter Cdr1 (Candida drug resistance 1) protein (Cdr1p) of Candida albicans, shows promiscuity towards the substrate it exports and plays a major role in antifungal resistance. It has two transmembrane domains (TMDs) comprising of six transmembrane helices (TMH) that envisage and confer the substrate specificity and two nucleotide binding domains (NBDs), interconnected by extracellular loops (ECLs) and intracellular loops (ICLs) Cdr1p. This study explores the diverse substrate specificity spectrum to get a deeper insight into the structural and functional features of Cdr1p.

View Article and Find Full Text PDF

Thirteen macrocyclic diterpenes (1-13) of the jatrophane and lathyrane types, either isolated from Euphorbia species or obtained by chemical derivatization, were evaluated for their ability to inhibit the drug efflux activity of Candida albicans CaCdr1p and CaMdr1p multidrug transporters overexpressed in a Saccharomyces cerevisiae strain. Their inhibitory potential was assessed through a functional assay of Nile Red accumulation monitored by flow cytometry. A chemosensitization assay, using the checkerboard method, was also performed with the active compounds in order to evaluate their type of interaction with fluconazole.

View Article and Find Full Text PDF

FK520, a homolog of antifungal FK506, displays fungicidal synergism with azoles in Candida albicans and inhibits drug efflux mediated by ABC multidrug transporter. This study establishes the molecular basis of interaction of FK520 with Cdr1 protein, which is one of the major ABC multidrug transporters of C. albicans.

View Article and Find Full Text PDF