One of the major plant stress level indicators is reactive oxygen species (ROS). They have been known to play a central role in regulating plant responses to various environmental stresses. This book chapter specifically covers abiotic stress induced by a drought hormone abscisic acid and biotic stress induced by Pseudomonas syringe DC3000 on single cell-type guard cells.
View Article and Find Full Text PDFSystemic acquired resistance (SAR) is a long-lasting broad-spectrum plant defense mechanism induced in distal systemic tissues by mobile signals generated at the primary infection site. Despite the discoveries of multiple potential mobile signals, how these signals cooperate to trigger downstream SAR signaling is unknown. Here, we show that endogenous extracellular nicotinamide adenine dinucleotide (phosphate) [eNAD(P)] accumulates systemically upon pathogen infection and that both eNAD(P) and the lectin receptor kinase (LecRK), LecRK-VI.
View Article and Find Full Text PDFMulti-omics has gained momentum over the past few years especially in plant single cell-type analysis as they aim to understand cellular molecular networks across different levels of genetic information flow. For multi-omics sample preparation, molecular extractions performed non-simultaneously create rooms for variation, inaccurate data, waste of limited samples, resources and labor. Here we optimized a protocol for 3-in-1 simultaneous extraction of RNA, metabolites, and proteins from the same single cell-type sample.
View Article and Find Full Text PDFNutrients and energy have emerged as central modulators of developmental programmes in plants and animals. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy, little is known about how TOR shapes developmental transitions and differentiation.
View Article and Find Full Text PDFScutellaria baicalensis is a well-studied medicinal plant belonging to the Lamiaceae family, prized for the unique 4'-deoxyflavones produced in its roots. In this study, three native species to the Americas, S. lateriflora, S.
View Article and Find Full Text PDFPhosphorylation can quickly switch on/off protein functions. Here, we reported pre-mRNA processing 4 kinase A (PRP4KA), and its paralogs interact with Serrate (SE), a key factor in RNA processing. PRP4KA phosphorylates at least five residues of SE in vitro and in vivo.
View Article and Find Full Text PDFDuring the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plant Arabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis.
View Article and Find Full Text PDFEarly age-related developmental senescence was observed in Arabidopsis double mutants that cannot produce indole-3-acetaldoxime (IAOx), the precursor to indole glucosinolates (IGs), camalexin and auxin. The early senescence phenotype was not observed when senescence was induced by darkness. The mutants had lower auxin levels, but did not display auxin-deficient phenotypes.
View Article and Find Full Text PDFCombining genetic engineering of MPK4 activity and quantitative proteomics, we established an in planta system that enables rapid study of MPK4 signaling networks and potential substrate proteins. Mitogen activated protein kinase 4 (MPK4) is a multifunctional kinase that regulates various signaling events in plant defense, growth, light response and cytokinesis. The question of how a single protein modulates many distinct processes has spurred extensive research into the physiological outcomes resulting from genetic perturbation of MPK4.
View Article and Find Full Text PDFGlucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other plant specialized metabolites, their presence does not directly affect the plant survival in terms of growth and development. However, specialized metabolites are essential to combat environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many pungent plants in the order of Brassicales.
View Article and Find Full Text PDF