Publications by authors named "Shwe Hlaing"

Colon-targeted oral drug delivery systems comprising nanoparticles and microparticles have emerged as promising tools for the treatment of ulcerative colitis (UC) because they minimize side effects and maximize the local drug concentration. Dexamethasone sodium phosphate (DSP) is a potent anti-inflammatory glucocorticoid used for the treatment of UC. However, it remains a rather short-term treatment option owing to its side effects.

View Article and Find Full Text PDF

The gut microbiome is closely linked to gastrointestinal health and disease status. Oral administration of known probiotic strains is now considered a promising therapeutic strategy, especially for refractory diseases such as inflammatory bowel disease. In this study, we developed a nanostructured hydroxyapatite/alginate (HAp/Alg) composite hydrogel that protects its encapsulated probiotic GG (LGG) by neutralizing hydrogen ions that penetrate the hydrogel in a stomach without inhibiting LGG release in an intestine.

View Article and Find Full Text PDF

() is a probiotic that has emerged as novel therapeutic agents for managing various diseases, such as cancer, atopic dermatitis, inflammatory bowel disease, and infections. In this study, we investigated the potential mechanisms underlying the anticancer effect of the metabolites of . We cultured cells to obtain their metabolites, created several dilutions, and used these solutions to treat human colonic Caco-2 cells.

View Article and Find Full Text PDF

Polyhydroxybutyrate (PHB) has emerged as a novel material for replacing various plastics used in the medical field. However, its application as a drug-delivery carrier for colitis-targeted delivery has not been explored. In this study, we used biosynthesized PHB combined with Eudragit FS (EFS) and cyclosporine A (CSA) to develop pH-responsive controlled CSA-releasing nanoparticles (CSA-PENPs) for colitis-targeted drug delivery and demonstrated its enhanced therapeutic efficacy in a dextran sulfate sodium (DSS)-induced murine colitis model.

View Article and Find Full Text PDF

A bacteria-infected wound can lead to being life-threatening and raises a great economic burden on the patient. Here, we developed polyethylenimine 1.8k (PEI) surface modified NO-releasing polyethylenimine 25k (PEI)-functionalized graphene oxide (GO) nanoparticles (GO-PEI/NO-PEI NPs) for enhanced antibacterial activity and infected wound healing via binding to the bacterial surface.

View Article and Find Full Text PDF

Although various local anti-inflammatory therapies for ulcerative colitis have been developed, rapid drug elimination from inflamed colitis tissue and off-target side effects reduce their therapeutic efficacy. In this study, we synthesized curcumin (Cur)-loaded hyaluronic acid (HA)-conjugated nanoparticles (Cur-HA-PLGA-NPs) that target inflamed colitis tissue via HA-CD44 interaction with resident colonic epithelial cells and subsequently target activated macrophages for ulcerative colitis therapy. The synthesized spherical Cur-HA-PLGA-NPs showed physicochemical properties similar to those of non-HA-conjugated Cur-PLGA-NPs.

View Article and Find Full Text PDF

Though coronary artery disease primarily occurs in those over the age of 40 years, younger individuals who use recreational drugs may be afflicted with coronary events. Cannabis is one such perilous agent that can cause myocardial infarction (MI) and is one of the most common psychoactive drugs used worldwide. Cannabis (also known as marijuana, weed, pot, dope or grass) is the most widely used illegal drug in the UK.

View Article and Find Full Text PDF

Although CD44-targeted delivery of pure drug microcrystals of azathioprine (AZA) could be a desirable approach to treat ulcerative colitis (UC), premature drug release and systemic absorption before reaching the colitis region remain a major obstacle. In this study, to overcome these limitations, we developed on-demand reconstitutable HA-doped AZA microcrystals (EFS/HA-AZAs) incorporating hyaluronic acid (HA)-doped AZA microcrystals (HA-AZAs) into a Eudragit FS (EFS) microcomposite. Since EFS acts as a protective layer, the premature release of AZA in the simulated conditions of the stomach and small intestine was substantially reduced, while HA-AZAs were successfully reconstituted from the EFS/HA-AZAs in the colonic environment, resulting from the pH-triggered dissolution of EFS.

View Article and Find Full Text PDF

In this study, we developed Lactobacillus rhamnosus GG (LGG)-encapsulating exfoliated bentonite/alginate nanocomposite hydrogels for protecting probiotics by delaying gastric fluid penetration into the nanocomposite and their on-demand release in the intestine. The pore size of the bentonite/alginate nanocomposite hydrogels (BA15) was two-fold smaller than that of alginate hydrogel (BA00). Following gastric pH challenge, the survival of LGG in BA15 decreased by only 1.

View Article and Find Full Text PDF

Sports face guards (FGs) are devices that protect athletes from maxillofacial injury or ensure rapid return to play following orofacial damage. Conventional FGs are uncomfortable to wear owing to stuffiness caused by poor ventilation and often slip off due to increase in weight due to absorption of moisture from perspiration, lowering players' performance. Herein, combinations of 3D-printed perforated acrylonitrile butadiene styrene (ABS) polymer sheets and 3D-knitted fabrics with honeycomb structures as cushioning materials were investigated to balance better wearing feel and mechanical properties.

View Article and Find Full Text PDF

Although nitric oxide (NO) has been emerging as a novel local anticancer agent because of its potent cytotoxic effects and lack of off-target side effects, its clinical applications remain a challenge because of the short effective diffusion distance of NO that limits its anticancer activity. In this study, we synthesized albumin-coated poly(lactic--glycolic acid) (PLGA)-conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles (Alb-PLP/NO NPs) that possess tumor-penetrating and NO-releasing properties for an effective local treatment of melanoma. Sufficient NO-loading and prolonged NO-releasing characteristics of Alb-PLP/NO NPs were acquired through PLGA-conjugated LP/NO copolymer (PLP/NO) synthesis, followed by nanoparticle fabrication.

View Article and Find Full Text PDF

Nanoparticle (NP)-based drug delivery systems accumulate in the disrupted epithelium of inflamed colon tissue in ulcerative colitis. However, premature early drug release and uptake or degradation of NPs during their passage through the harsh gastric or intestinal environment compromise their therapeutic outcomes. This study aimed to develop an advanced colitis-targeted hybrid nanoparticles-in-microparticles (NPsinMPs) drug delivery system to overcome the aforementioned challenges.

View Article and Find Full Text PDF

Due to their low acid tolerance, a majority of probiotics face diculties with regard tosurviving in the gastric environment long enough to reach the intestinal surfaces where they colonizeand provide health benefits. We prepared a probiotic delivery system that can enhance their viabilityin acidic conditions by developing a one-step poly-L-lysine (PLL) coating process. We determinedwhether the coating process was successful by measuring the zeta potential and observing it withconfocal scanning microscopy.

View Article and Find Full Text PDF

-nitrosoglutathione (GSNO) has emerged as a potent agent for the treatment of infected cutaneous wounds. However, fabrication of GSNO-containing nanoparticles has been challenging due to its high hydrophilicity and degradability. The present study aimed to fabricate nanoparticles using newly synthesized GSNO-conjugated poly(lactic--glycolic acid) (PLGA) (GSNO-PLGA; GPNPs).

View Article and Find Full Text PDF

Nano-drug delivery systems (NDDS) for colon-targeted drug delivery are an active area of research on local diseases affecting the colon, such as ulcerative colitis, Crohn's disease, colon cancer, and for the delivery of peptide or protein drugs and vaccinations. In particular, targeted nano-drug delivery to the colon is advantageous for colon-specific diseases because nanoparticles can accumulate in diseased parts, improve the efficacies of therapeutics, and enable localized treatments, which reduces systemic toxicity. However, there are many hurdles, such as burst drug release, enzyme and acidic degradation of drug and carrier in the stomach, pH variations, mucus entrapment, and systemic uptake in the upper small intestine, which could challenge and compromise the successful delivery of NDDS to the colon.

View Article and Find Full Text PDF

Bacterial biofilms on wounds impair the healing process and often lead to chronic wounds. Chitosan is a well-known biopolymer with antimicrobial and anti-biofilm effects. S-nitrosoglutathione (GSNO) has been identified as a promising nitric oxide (NO) donor to defend against pathogenic biofilms and enhance wound healing activities.

View Article and Find Full Text PDF

The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds.

View Article and Find Full Text PDF

Wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilm represent a high risk in patients with diabetes. Nitric oxide (NO) has shown promise in dispersing biofilm and wound healing. For an effective treatment of MRSA biofilm-infected wounds, however, NO needs to be supplied to the biofilm matrix in a sustainable manner due to a short half-life and limited diffusion distance of NO.

View Article and Find Full Text PDF

Adhesion of nanoparticles (NPs) to the bacterial cell wall by modifying their physicochemical properties can improve the antibacterial activity of antibiotic. In this study, we prepared positively charged clindamycin-loaded poly (lactic-co-glycolic acid)-polyethylenimine (PLGA-PEI) nanoparticles (Cly/PPNPs) and negatively charged clindamycin-loaded PLGA NPs (Cly/PNPs) and investigated the effect of NP adhesion to bacteria on the treatment of methicillin-resistant (MRSA)-infected wounds. The Cly/PPNPs and Cly/PNPs were characterized according to particle size, polydispersity index, surface charge, and drug loading.

View Article and Find Full Text PDF

Methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds have become a significant clinical issue worldwide. Recently, nitric oxide (NO) has emerged as a potent antibacterial agent against MRSA infections and a wound-healing enhancer. Nevertheless, clinical applications of NO have been largely restricted by its gaseous state and short half-life.

View Article and Find Full Text PDF