Publications by authors named "Shveta V Parekh"

There is a significant co-occurrence of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms linking chronic opioid use, withdrawal, and the development of PTSD are poorly understood. Our previous research has shown that proinflammatory cytokines, expressed primarily by astrocytes in the dorsal hippocampus (DH), play a role in the development of heroin withdrawal-enhanced fear learning (HW-EFL), an animal model of PTSD-OUD comorbidity.

View Article and Find Full Text PDF

Case studies are a valuable teaching tool to engage students in course content using real-world scenarios. As part of the High-throughput Discovery Science & Inquiry-based Case Studies for Today's Students (HITS) Research Coordination Network (RCN), our team has created the Sleepy Mice Case Study for students to engage with RStudio and the Allen Institute for Brain Science's open access high-throughput sleep dataset on mice. Sleep is important for health, a familiar concern to college students, and was a basis for this case study.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) and opioid use disorder (OUD) are comorbid in clinical populations. However, both pre-clinical and clinical studies of these co-occurring disorders have disproportionately represented male subjects, limiting the applicability of these findings. Our previous work has identified chronic escalating heroin administration and withdrawal can produce enhanced fear learning.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a devastating disorder that involves maladaptive changes in immune status. Using the stress-enhanced fear learning (SEFL) paradigm, an animal model of PTSD, our laboratory has demonstrated increased pro-inflammatory cytokine immunoreactivity in the hippocampus following severe stress. Recent clinical trials have demonstrated 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy as an effective novel treatment for PTSD.

View Article and Find Full Text PDF

Background: Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature.

View Article and Find Full Text PDF

There is significant comorbidity of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms underlying the relationship between chronic opioid use and withdrawal and development of PTSD are poorly understood. Our previous work identified that chronic escalating heroin administration and withdrawal can produce enhanced fear learning, an animal model of hyperarousal, and is associated with an increase in dorsal hippocampal (DH) interleukin-1β (IL-1β).

View Article and Find Full Text PDF

Converging evidence suggests opioid abuse can increase the incidence and severity of post-traumatic stress disorder (PTSD) in clinical populations. Interestingly, opioid withdrawal alone can produce symptoms similar to those of PTSD. Despite this association, the neural mechanisms underlying the relationship of opioid abuse, withdrawal, and PTSD is poorly understood.

View Article and Find Full Text PDF

The physiological and motivational effects of heroin and other abused drugs become associated with environmental (contextual) stimuli during repeated drug use. As a result, these contextual stimuli gain the ability to elicit drug-like conditioned effects. For example, after context-heroin pairings, exposure to the heroin-paired context alone produces similar effects on peripheral immune function as heroin itself.

View Article and Find Full Text PDF

Repeated pairings of heroin and a context results in Pavlovian associations which manifest as heroin-conditioned appetitive responses and peripheral immunomodulation upon re-exposure to heroin-paired conditioned stimuli (CS). The dorsal hippocampus (DH) plays a key role in the neurocircuitry governing these context-heroin associations. Within the DH, expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) is required for heroin-conditioned peripheral immunomodulation to occur.

View Article and Find Full Text PDF