Publications by authors named "Shuzo Kutsuna"

Poly(vinyl alcohol) (PVA) is a well-known recalcitrant pollutant that threatens ecological systems and human health. In this study, ozone-microbubble treatment was evaluated as a physicochemical method to mineralize PVA in solution for wastewater treatment. Microbubbles are very small bubbles (<50 μm in diameter) and shrink in water because of the rapid dissolution of the interior gas.

View Article and Find Full Text PDF

Radionuclides released during the Fukushima Daiichi nuclear accident caused altitude-dependent surface contamination in the mountainous areas of Japan. To explore the possible cloudwater deposition that formed a distinctive contamination profile, data from pollen sensors deployed nationwide were analyzed. Utilizing the polarization of scattered light, Cedar pollen and water droplets were distinguished.

View Article and Find Full Text PDF

Photochemical decomposition of a fluorotelomer unsaturated carboxylic acid, C3F7CFCHCOOH (1), in the presence of WO3 and an electron acceptor (S2O8(2-) or H2O2) in water under visible-light irradiation was investigated. Under an O2 atmosphere, 1 was not decomposed either by TiO2 (P25) or WO3 alone. A combination of WO3 and H2O2 also resulted in almost no decomposition of 1.

View Article and Find Full Text PDF

The decomposition of hydroperfluorocarboxylic acids [H-PFCAs; HC(n)F(2)(n)COOH (n=4 and 6)] induced by heteropolyacid photocatalyst H(4)SiW(12)O(40) in water was investigated, and the results are compared with the results for the corresponding perfluorocarboxylic acids (PFCAs; C(n)F(2)(n)(+1)COOH). This is the first report on the photochemical decomposition of H-PFCAs, which are being developed as alternative surfactants to environmentally persistent and bioaccumulative PFCAs. H-PFCAs were not decomposed by irradiation with UV-Visible light (>290 nm) in the absence of H(4)SiW(12)O(40).

View Article and Find Full Text PDF

The decomposition of perfluoroalkylether sulfonates C(2)F(5)OC(2)F(4)SO(3)(-) and C(3)F(7)OC(2)F(4)SO(3)(-) in subcritical water was investigated, and the results were compared with those for perfluorobutanesulfonate (C(4)F(9)SO(3)(-)), which has no ether linkage. This is the first report on the use of subcritical water to decompose perfluoroalkylether sulfonates, which are being developed as alternative surfactants to environmentally persistent and bioaccumulative perfluoroalkylsulfonates. Whereas C(4)F(9)SO(3)(-) showed little reactivity in subcritical water, C(2)F(5)OC(2)F(4)SO(3)(-) decomposed efficiently in subcritical water ( approximately 350 degrees C) in the presence of oxygen gas to form F(-) and SO(4)(2-) in the aqueous phase and CO(2) in the gas phase as major products.

View Article and Find Full Text PDF

Decomposition of C5-C9 perfluorocarboxylic acids (PFCAs) and perfluoroether carboxylic acids (alternatives to PFCA-based surfactants) in hot water in a sealed reactor was investigated. Although PFCAs showed almost no decomposition in hot water at 80 degrees C in the absence of persulfate (S2O8(2-)), the addition of S2O8(2-) to the reaction system led to efficient decomposition, even at this relatively low temperature. The major products in the aqueous and gas phases were F- ions and CO2, respectively, and short-chain PFCAs were also detected in the aqueous phase.

View Article and Find Full Text PDF

Decomposition of perfluorohexanesulfonate (PFHS), a bioaccumulative analogue of perfluorooctanesulfonate (PFOS), in sub- and supercritical water was investigated. Although PFHS was only slightly reactive in pure subcritical water at 350 degrees C, it decomposed to F(-) and SO(4)(2-) ions when the temperature was increased to 380 degrees C, at which temperature the water became supercritical state. Addition of zerovalent iron to the reaction system dramatically accelerated PFHS decomposition to F(-) ions in both sub- and supercritical water: for example, when the initial PFHS concentration was 741microM, the F(-) yields at 350 degrees C were 4.

View Article and Find Full Text PDF

The persulfate (S(2)O(8)(2-))-induced photochemical decomposition of C(3)F(7)CF=CHCOOH in water was investigated to develop a method to neutralize stationary sources of fluorotelomer unsaturated carboxylic acids (FTUCAs), which have recently been detected in the environment, and are considered to be more toxic than the environmentally persistent perfluorocarboxylic acids (PFCAs). Photolysis of S(2)O(8)(2-) produced highly oxidative sulfate radical anions (SO(4)(-)), which efficiently decomposed C(3)F(7)CF=CHCOOH to F(-) and CO(2) via C(3)F(7)COOH. With an initial S(2)O(8)(2-) concentration of 12.

View Article and Find Full Text PDF

The photochemical decomposition of short-chain (C(3)-C(5)) perfluorocarboxylic acids (PFCAs) was investigated. Direct photolysis in water proceeded slowly with the 220- to 460-nm light emission from a xenon-mercury lamp to form F(-), CO(2), and shorter-chain PFCAs. Addition of a small amount of Fe(3+) to the aqueous solutions of the PFCAs dramatically enhanced their photochemical decomposition under an oxygen atmosphere: when the (initial PFCA)/(initial Fe(3+)) molar ratio was 13.

View Article and Find Full Text PDF

Degradation of C4F9C2H4OH in air over TiO2 particles was examined in this first report of gas-solid heterogeneous photochemical degradation of fluorotelomer alcohols (FTOHs), which may be precursors of perfluorocarboxylic acids (PFCAs) in the environment. Photoirradiation (>290 nm) of C4F9C2H4OH in air flowing over TiO2 produced CO2, via C4F9CH2CHO, C4F9CHO, CnF(2n+1)COF (n=2 and/or 3), and COF2, in that order. X-ray photoelectron spectroscopy of the Ti02 surface showed a decrease in the amount of fluorine bonded to carbon and an increase in the amount of F- as the degradation of C4F9C2H4OH in air proceeded.

View Article and Find Full Text PDF

Decomposition of perfluorooctanesulfonate (PFOS) and related chemicals in subcritical water was investigated. Although PFOS demonstrated little reactivity in pure subcritical water, addition of zerovalent metals to the reaction system enhanced the PFOS decomposition to form F-ions, with an increasing order of activity of no metal approximately equal Al < Cu < Zn << Fe. Use of iron led to the most efficient PFOS decomposition: When iron powder was added to an aqueous solution of PFOS (93-372 microM) and the mixture was heated at 350 degrees C for 6 h, PFOS concentration in the reaction solution fell below 2.

View Article and Find Full Text PDF

Photochemical decomposition of persistent and bioaccumulative long-chain (C9-C11) perfluorocarboxylic acids (PFCAs) with persulfate ion (S2O8(2-)) in an aqueous/liquid CO2 biphasic system was examined to develop a technique to neutralize stationary sources of the long-chain PFCAs. The long-chain PFCAs, namely, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUA), which are used as emulsifying agents and as surface treatment agents in industry, are relatively insoluble in water but are soluble in liquid CO2; therefore, introduction of liquid CO2 to the aqueous photoreaction system reduces the interference of colloidal PFCA particles. When the biphasic system was used to decompose these PFCAs, the extent of reaction was 6.

View Article and Find Full Text PDF

Photochemical decomposition of persistent perfluorocarboxylic acids (PFCAs) in water by use of persulfate ion (S2O8(2-)) was examined to develop a technique to neutralize stationary sources of PFCAs. Photolysis of S2O8(2-) produced highly oxidative sulfate radical anions (SO4-), which efficiently decomposed perfluorooctanoic acid (PFOA) and other PFCAs bearing C4-C8 perfluoroalkyl groups. The major products were F- and CO2; also, small amounts of PFCAs with shorter than initial chain lengths were detected in the reaction solution.

View Article and Find Full Text PDF

The decomposition of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water by UV-visible light irradiation, by H202 with UV-visible light irradiation, and by a tungstic heteropolyacid photocatalyst was examined to develop a technique to counteract stationary sources of PFOA. Direct photolysis proceeded slowly to produce CO2, F-, and short-chain perfluorocarboxylic acids. Compared to the direct photolysis, H2O2 was less effective in PFOA decomposition.

View Article and Find Full Text PDF

The heterogeneous decomposition of CHF2OCH2C2F5, a potential substitute for hydrofluorocarbons, over aluminosilica clay minerals in air, was confirmed to occur at 313 K in a closed-circulation reactor. HC(O)OCH2C2F5, the gaseous main product was produced through hydrolytic elimination of F atoms from the CHF2OCH2- group. CHF2OCH2CF3 also decomposed to HC(O)OCH2CF3 over the clay minerals.

View Article and Find Full Text PDF