Publications by authors named "Shuyue Ye"

Mitochondrial RNA (mtRNA) plays a critical role in synthesis of mitochondrial proteins. Interfering mtRNA is a highly effective way to induce cell apoptosis. Herein, we report a near-infrared (NIR) light-mediated mitochondrial RNA modification approach for long-term imaging and effective suppression of tumors.

View Article and Find Full Text PDF

Mitochondria as one of the key subcellular organelles have been well recognized as a promising druggable target and are closely associated with energy supply and various cellular functions. Realizing high accumulation and prolonged retention of radiosensitizers in the cellular mitochondria of tumors is an effective way to improve radiotherapeutic efficacy. Herein, we develop mitochondria-targeting and protein sulfenic acid (PSA)-reactive gold nanoparticles (dAuNP-TPP) that are fabricated by incorporating triphenylphosphine and 1,3-cyclohexanedione onto the surface of AuNPs (∼20 nm) to improve CT imaging and radiotherapeutic efficacy of tumors.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) as an important biological gasotransmitter plays a pivotal role in many physiological and pathological processes. The sensitive and quantitative detection of HS level is therefore crucial for precise diagnosis and prognosis evaluation of various diseases but remains a huge challenge due to the lack of accurate and reliable analytical methods in vivo. In this work, we report a smart, HS-responsive and depleting nanoplatform (ZNNPs) for quantitative and real-time imaging of endogenous HS for early diagnosis and treatment of HS-associated diseases.

View Article and Find Full Text PDF

Accurately assessing the radiation level of tumors and surrounding tissues is of great significance for the optimization of clinical therapeutic interventions as well as minimizing the radiation-induced side effects. Therefore, the development of noninvasive and sensitive biological dosimeters is vital to achieve quantitative detection of a radiation dose in a living system. Herein, as a proof of concept, we report a tumor-targeted and caspase-3-activatable NIR fluorogenic probe AcDEVD-Cy-RGD consisting of a hemicyanine fluorophore as a signal reporter, a caspase-3 specific Asp-Glu-Val-Asp (DEVD) peptide, and a cyclic Arg-Gly-Asp peptide (cRGD) for tumor targeting.

View Article and Find Full Text PDF

Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs . Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature.

View Article and Find Full Text PDF

Developing endogenous photo-activated theranostic platforms to overcome the limitation of low tissue-penetration from external light sources is highly significant for cancer diagnosis and treatment. We report a H O -initiated chemiluminescence (CL)-triggered nanoparticle aggregation strategy to activate theranostic functions of gold nanoparticles (AuNPs) for effective tumor imaging and therapy. Two types of AuNPs (tAuNP & mAuNP) were designed and fabricated by conjugating 2,5-diphenyltetrazole and methacrylic acid onto the surface of AuNPs, respectively.

View Article and Find Full Text PDF

Developing an accurate and reliable detection technique for early embryonic apoptosis is of great significance for real-time monitoring and evaluation of embryonic development in living systems. Herein, we have rationally designed and synthesized a novel near-infrared (NIR) fluorogenic probe CGK(QSY21)DEVD-Cy5.5 for real-time imaging of embryonic apoptosis.

View Article and Find Full Text PDF

Accurate diagnosis and efficient treatment of tumors are highly significant in battling cancer. Near-infrared II (NIR-II) fluorescence imaging shows big promise for deep tumor visualization in living systems due to high temporal and spatial resolution and deep tissue penetration capability, whereas the development of efficient NIR-II probes for tumor theranostics still faces a huge challenge. Herein, we have designed and constructed intelligent mPEG-PCL-encapsulated NIR-II nanoprobe ZM1068-NPs that showed great chemical stability and excellent biocompatibility.

View Article and Find Full Text PDF

Improving the enrichment of drugs or theranostic agents within tumors is very vital to achieve effective cancer diagnosis and therapy while greatly reducing the dosage and damage to normal tissues. Herein, as a proof of concept, we for the first time report a red light-initiated probe-RNA cross-linking (RLIPRC) strategy that can not only robustly promote the accumulation and retention of the probe in the tumor for prolonged imaging but also significantly inhibits the tumor growth. A near-infrared (NIR) fluorescent probe -CR consisting of a NIR dye (Cyanine 7) as a signal reporter, a cyclic-(arginine-glycine-aspartic acid) (cRGD) peptide for tumor targeting, and a singlet oxygen (O)-sensitive furan moiety for RNA cross-linking was rationally designed and synthesized.

View Article and Find Full Text PDF

Tumor microenvironment plays a pivotal role in the growth and metastasis of tumors, and has become a promising target for precise diagnosis and treatment of tumors. Herein, a novel smart NIR theranostic probe Cy-1 that can simultaneously respond to low intracellular pH and reductive glutathione (GSH) is reported. This probe has demonstrated to be able to intermolecularly undergo a biologically compatible CBT-Cys condensation reaction to selectively form large nanoaggregates in the tumor microenvironment resulting in its enhanced accumulation and retention in the tumor, which as a consequence significantly improves the sensitivity of NIR/photoacoustic imaging and photothermal therapeutic efficacy of tumors in living mice.

View Article and Find Full Text PDF

Radiotherapy (RT) has become one of the most widely used treatments for malignant tumors in clinics. Developing a novel radiosensitizer for the integration of precise diagnosis and effective radiotherapy against hypoxic tumors is desirable but remains a great challenge. Herein, protein sulfenic acid reactive gold nanoparticles as effective radiosensitizers were for the first time reported for enhanced X-ray computed tomography (CT) imaging and radiotherapy of tumors in vivo.

View Article and Find Full Text PDF

Mitochondria plays pivotal roles in energy production and apoptotic pathways. Mitochondria-targeting strategy has been recognized as a promising way for cancer theranostics. Thus, spatiotemporally manipulating the prolonged retention of theranostic agents within mitochondria is considerably significant in cancer diagnosis and therapy.

View Article and Find Full Text PDF

Developing novel small-molecule-based probes with both deep tissue imaging and therapeutic functions is highly significant in cancer diagnosis and treatment. Herein, we report a novel second near-infrared (NIR-II) fluorescent probe QT-RGD constructed with a NIR-II emissive organic fluorophore and two cyclic-(arginine-glycine-aspartic acid) (cRGD) peptides that can specifically bind to the tumor-associated αvβ3 integrin for accurate tumor diagnosis and targeting therapy. The isotopic 125I-labeled probe exhibited great tumor targeting ability and emitted intensive NIR-II/photoacoustic (PA)/single-photon emission computed tomography (SPECT) signals, which allows specific and sensitive multimodal visualization of tumors in vivo.

View Article and Find Full Text PDF

Developing activatable near-infrared (NIR) probes to specifically monitor and visualize the activities of cancer-related enzymes is highly significant yet challenging in early cancer diagnosis. Taking advantage of the unique photophysical characteristics of aggregation-induced emission (AIE) fluorophores, here we design and synthesize a novel activatable probe QMTP by conjugating an AIE fluorophore quinolone-malononitrile to a hydrophilic phosphate-modified phenol group. The probe was initially non-fluorescent in aqueous solution due to its good water solubility, but was readily activated to generate a strong NIR fluorescence upon treatment with alkaline phosphatase (ALP), which enables specific detection of ALP activity.

View Article and Find Full Text PDF

High-performance photosensitizers are highly desired for achieving selective tumor photoablation in the field of precise cancer therapy. However, photosensitizers frequently suffer from limited tumor suppression or unavoidable tumor regrowth due to the presence of residual tumor cells surviving in phototherapy. A major challenge still remains in exploring an efficient approach to promote dramatic photoconversions of photosensitizers for maximizing the anticancer efficiency.

View Article and Find Full Text PDF