Improving plant resistance against systemic diseases remains a challenging research topic. In this study, we developed a dual-action pesticide-loaded hydrogel with the capacity to significantly induce plant resistance against tobacco mosaic virus (TMV) infection and promote plant growth. We produced an alginate-lentinan-amino-oligosaccharide hydrogel (ALA-hydrogel) by coating the surface of an alginate-lentinan drug-loaded hydrogel (AL-hydrogel) with amino-oligosaccharide using electrostatic action.
View Article and Find Full Text PDFAt present, the management of () mainly relies on chemical pesticides. However, along with the resistance generated by to these chemical pesticides, the toxicity and non-degradability of this chemical molecule may also cause serious environmental problems. Herein, a new bio-based nano-antifungal material (CNC@CTAB) was made with coating hexadecyl trimethyl ammonium bromide (CTAB) on the surface of a cellulose nanocrystal (CNC).
View Article and Find Full Text PDF