Pneumonia is a ubiquitous disease caused by viral and bacterial infections, characterized by high levels of reactive oxygen species in inflamed areas. Therapeutic strategies targeting reactive oxygen species levels in pneumonia have limited success due to the intricate nature of lung tissues and lung inflammatory responses. Here we describe an inhalable, non-invasive therapeutic platform composed of engineered cerium-based tannic acid nanozymes bound to a self-assembling peptide.
View Article and Find Full Text PDFPurpose: Lateral lymph node metastasis (LLNM) is very common in medullary thyroid carcinoma (MTC), but there is still controversy about how to manage cervical lateral lymph nodes, especially for clinically negative MTC. The aim of this study is to develop and validate a nomogram for predicting LLNM risk in MTC.
Materials And Methods: A total of 234 patients from two hospitals were retrospectively enrolled in this study and divided into LLNM positive group and LLNM negative group based on the pathology.
Background: Developing biosensors with antifouling properties is essential for accurately detecting low-concentration biomarkers in complex biological matrix, which is imperative for effective disease diagnosis and treatment. Herein, an antifouling electrochemical aptasensor qualifying for probing targets in human serum was explored based on newly-devised peptides that could form inverted U-shaped structures with long-term stability.
Results: The inverted U-shaped peptides (U-Pep) with two terminals of thiol groups grafted onto the Au-modified electrode showcase superior antifouling properties in terms of high stability against enzymatic hydrolysis and long acting against biofouling in actual biofluids.
Purpose: Chemotherapy remains the primary therapeutic approach for advanced Hepatocellular Carcinoma (HCC). The therapeutic effect of chemotherapy is limited and the toxic side effects are serious. The aim of this study is to develop a nanobubble that is ultrasonically responsive to reduce the toxic side effects of direct chemotherapy.
View Article and Find Full Text PDFViruses can selectively repress the translation of mRNAs involved in the antiviral response. RNA viruses exploit the Grb10-interacting GYF (glycine-tyrosine-phenylalanine) proteins 2 (GIGYF2) and eukaryotic translation initiation factor 4E (eIF4E) homologous protein 4EHP to selectively repress the translation of transcripts such as , which encodes the antiviral cytokine interferon-β (IFN-β). Herein, we reveal that GIGYF1, a paralog of GIGYF2, robustly represses cellular mRNA translation through a distinct 4EHP-independent mechanism.
View Article and Find Full Text PDFMagnetic hyperthermia therapy (MHT) has garnered immense interest due to its exceptional spatiotemporal specificity, minimal invasiveness and remarkable tissue penetration depth. Nevertheless, the limited magnetothermal heating capability and the potential toxicity of metal ions in magnetic materials based on metallic elements significantly impede the advancement of MHT. Herein, we introduce the concept of nonmetallic materials, with graphite (Gra) as a proof of concept, as a highly efficient and biocompatible option for MHT of tumors in vivo for the first time.
View Article and Find Full Text PDFThe development of castration-resistant prostate cancer (CRPC) is driven by intricate genetic and epigenetic mechanisms. Traf2- and Nck-interacting kinase (TNIK) has been reported as a serine/threonine kinase associated with tumor cell proliferation or unfavorable cancer behavior. The microarray approach revealed a substantial upregulation of TNIK expression levels, enabling us to investigate the functional behaviors of the TNIK gene in CRPC.
View Article and Find Full Text PDFTwo previous unreported epipolythiodioxopiperazines of the emestrin family, namely, noremestrin A () and secoemestrin E (), were successfully isolated from the fungal source sp. 1454. Employing comprehensive spectroscopic techniques, such as high-resolution electrospray ionization mass spectrometry, infrared, and nuclear magnetic resonance (NMR), along with NMR and electronic circular dichroism calculations, the chemical structures of compounds and were elucidated.
View Article and Find Full Text PDFCancer drugs usually have side effects in chemotherapy. Apoptin, a protein recognized by its good therapeutical effect on tumors and innocuous to body, is employed to treat hepatocellular carcinoma (HCC). As our previous data shown, the efficiency of apoptin protein might be limited by the protein of apaf-1.
View Article and Find Full Text PDFGraphdiyne (GDY) is a new recently-synthesized carbon allotrope. We find here that graphdiyne oxide (GDYO), the oxidized form of GDY, can serve as a new kind of carbon nanozyme mimicking peroxidase. This finding essentially offers a new platform for fundamental understanding of carbon nanozymes and broadens the application of GDY.
View Article and Find Full Text PDFSelectivity of electrocatalysts is determined not only by active sites for specific substrate interactions but also by the efficiency of electronic coupling mediated by intervening matrices. Here, we demonstrate the design of electron transport pathways to achieve catalytic specificity by interfacing redox-active methylene green (MG) and semiconducting graphdiyne (GDY), a 2D multilayered π-staked carbon nanosheet. Optical spectroscopy, electrochemistry, and computational simulation unravel the formation of MG dimers within the interlayer space of GDY nanosheets and the consequential tuning of activation overpotential and electron transfer rates.
View Article and Find Full Text PDFIncreased understanding of the functions of lactate has suggested a close relationship between lactate homeostasis and normal brain activity because of its importance as an energy source and signaling molecule. Here we show that lactate levels affect adult hippocampal neurogenesis. Cerebrovascular-specific deletion of PTEN causes learning and memory deficits and disrupts adult neurogenesis with accompanying lactate accumulation.
View Article and Find Full Text PDFAs a new kind of two-dimensional carbon allotrope, graphdiyne (GDY) consists of sp- and sp-hybridized carbon atoms and has recently been used for developing highly efficient photocatalytic systems because of its unique properties. In this study, we find that GDY can form a Pickering emulsion with silver phosphate (AgPO) nanoparticles that exhibits largely enhanced photocatalytic activity in the visible-light region. In this system, AgPO acts as a photocatalytically active semiconductor with GDY as the hydrophobic nanostructure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2018
Graphdiyne oxide (GDO), the oxidized form of graphdiyne (GDY), exhibits an ultrafast humidity response with an unprecedented response speed (ca. 7 ms), which is three times faster than that of graphene oxide (GO) with the same thickness and O/C ratio. The ultrafast humidity response of GDO is considered to benefit from the unique carbon hybridization of GDO, which contains acetylenic bonds that are more electron-withdrawing than ethylenic bonds in GO, consequently giving rise to a faster binding rate with water.
View Article and Find Full Text PDFGraphdiyne (GDY) is recently synthesized two-dimensional carbon allotrope with hexagonal rings cross-linked by diacetylene through introducing butadiyne linkages (-C≡C-C≡C-) to form 18-C hexagons and is emerging to be fundamentally interesting and particularly useful in various research fields. In this study, we for the first time find that GDY can be used as an electrode material with reactivity tunable by electronic states and surface chemistry of GDY. To demonstrate this, GDY is oxidized into graphdiyne oxide (GDYO) that is then chemically and electrochemically reduced into chemically reduced GDYO (cr-GDYO) and electrochemically reduced GDYO (er-GDYO), respectively.
View Article and Find Full Text PDFGraphdiyne (GD), a new kind of two-dimensional carbon allotrope consisting of a hexagonal ring and a diacetylenic linkage unit, is observed to exhibit a high fluorescence quenching ability and can be used as a new platform for fluorescence sensing, where GD oxide, the oxidized form of GD, is found to exhibit higher quenching ability than GD. As a proof-of-concept demonstration, GD oxide is used to establish a new platform for effective fluorescence sensing of DNA and thrombin with a high sensitivity and selectivity.
View Article and Find Full Text PDFAnti-lipopolysaccharide factor (ALF) is a small protein with broad-spectrum antimicrobial activity, which has potential application in the disease control. Previously, we isolated seven ALF isoforms from the Chinese shrimp Fenneropenaeus chinensis. In the present study, their distributions in tissues of shrimp were analyzed and the data showed that different isoforms had different expression profiles, which suggested that they might have different functions.
View Article and Find Full Text PDFIn this work, a nanocomposite film electrode containing polyoxometalate (POM) clusters K6P2W18O62 (P2W18), carbon nanotubes (CNTs) and Au nanoparticles (AuNPs) was fabricated by a smart combination of layer-by-layer (LbL) with the self-assembly technique. The synergistic effect of POM, CNTs and AuNPs on the electrocatalysis of H2O2 was investigated to improve the sensitivity of H2O2 detection. The response of (P2W18/CNTs/P2W18/AuNPs)4 electrodes to H2O2 was remarkably enhanced due to large active sites and good electron conducting ability.
View Article and Find Full Text PDFAnti-lipopolysaccharide factor (ALF) is one of the widely-studied antimicrobial peptides (AMPs) with broad-spectrum antibacterial activity and antiviral property. Previous studies show the existence of multiform of ALFs in crustacean which are important for immunity of the animals. In the present study, we characterized one isoform of ALF from the Chinese shrimp Fenneropenaeus chinensis (FcALF2).
View Article and Find Full Text PDFAnti-lipopolysaccharide factor (ALF) is a small protein with broad-spectrum antimicrobial activities and certain antiviral property. Its putative lipopolysaccharide (LPS) binding domain was deduced to be important for its activities. However, there is still no report revealing how the structure of the LPS-binding domain affects its biological function until now.
View Article and Find Full Text PDF