Lung cancer remains the leading cause of cancer-related death worldwide, and drug resistance represents the main obstacle responsible for the poor mortality and prognosis. Here, to identify a novel gene signature for predicting survival and drug response, we jointly investigated RNA sequencing data of lung adenocarcinoma patients from TCGA and GEO databases, and identified a ferroptosis-related gene signature. The signature was validated in the validation set and two external cohorts.
View Article and Find Full Text PDFGliomas are highly invasive and are the most common type of primary malignant brain tumor. The routine treatments for glioma include surgical resection, radiotherapy, and chemotherapy. However, glioma recurrence and patient survival remain unsatisfactory after employing these traditional treatment approaches.
View Article and Find Full Text PDFInhibitory oligodeoxynucleotides (ODNs) are short single-stranded DNA, which capable of folding into complex structures, enabling them to bind to a large variety of targets. With appropriate modifications, the inhibitory oligodeoxynucleotides exhibited many features of long half-life time, simple production, low toxicity and immunogenicity. In recent years, inhibitory oligodeoxynucleotides have received considerable attention for their potential therapeutic applications in immune-mediated inflammatory diseases (IMIDs).
View Article and Find Full Text PDFHead and neck squamous cell carcinoma (HNSC) represents one of the most common malignant carcinomas worldwide. Because the 5-year survival rate of patients with HNSC is poor, it is necessary to develop an effective signature for predicting the risk of HNSC. To identify a circadian rhythm (CR)-related predictive signature, we analyzed the RNA-seq data of patients with HNSC from The Cancer Genome Atlas and Gene Expression Omnibus cohorts.
View Article and Find Full Text PDFAcute lung injury (ALI) with uncontrolled inflammatory response has high morbidity and mortality rates in critically ill patients. Pathogen-associated molecular patterns (PAMPs) are involved in the development of uncontrolled inflammatory response injury and associated lethality. In this study, we investigated the inhibit effect of MS19, a microsatellite DNA-derived oligodeoxynucleotide (ODN) with AAAG repeats, on the inflammatory response induced by various PAMPs and .
View Article and Find Full Text PDFToll-like receptors (TLRs) are key sensors that recognize the pathogen-associated molecular patterns (PAMPs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to activate innate immune response to clear the invading virus. However, dysregulated immune responses may elicit the overproduction of proinflammatory cytokines and chemokines, resulting in the enhancement of immune-mediated pathology. Therefore, a proper understanding of the interaction between SARS-CoV-2 and TLR-induced immune responses is very important for the development of effective preventive and therapeutic strategies.
View Article and Find Full Text PDFIn this study, a novel colorimetric sensing platform was developed for the detection of using dog immunoglobulin G (IgG) as the capture antibody and chicken anti-protein A immunoglobulin Y labeled with horseradish peroxidase (HRP-IgY) as the detection antibody. Dog IgG labeled with magnetic beads was used to capture through the interaction between the Fc region of dog IgG and Staphylococcal protein A (SPA). HRP-IgY was introduced to recognize the residual SPA on the surface of and to create a sandwich format, after which a soluble 3,3',5,5'-tetramethylbenzidine (TMB) substrate was added.
View Article and Find Full Text PDFTo develop a specific method for the detection of S. aureus, chicken anti-protein A IgY was adopted for specifically capturing S. aureus, depending on the specific recognition of staphylococcal protein A (SPA) by chicken anti-protein A IgY, which can eliminate the interference from protein G-producing Streptococcus.
View Article and Find Full Text PDF