Electrostatic force nonlinearity is widely present in MEMS systems, which could impact the system sensitivity performance. The Frequency modulation (FM) method is proposed as an ideal solution to solve the problem of environmental fluctuation stability. The effect of electrostatic force nonlinearity on the sensitivity performance of a class of FM micro-gyroscope is investigated.
View Article and Find Full Text PDFThe parameter tuning of a multi-stable energy harvester is crucial to enhancing harvesting efficiency. In this paper, the bifurcation theory is applied to quantitatively reveal the effects of structural parameters on the statics and dynamics of a quad-stable energy harvester (QEH). Firstly, a novel QEH system utilizing the geometric nonlinearity of springs is proposed.
View Article and Find Full Text PDFIn this paper, we apply the leverage amplification principle to improve the gain of a three-degrees-of-freedom (3-DoF) micro-gyro. The gain of the micro-gyro can be improved by designing linear and nonlinear micro-gyros with an anchored lever mechanism (ALM). First, the sensor system of the micro-gyro is designed as a complete 2-DOF system with an ALM.
View Article and Find Full Text PDFIn this paper, we use the nonlinear hardening stiffness of drive mode deal with the contradiction between gain and bandwidth of the linear micro-gyroscope, to improve the bandwidth and gain in sense direction. Firstly, in order to adjust the distance between two resonant peaks, we changed an incomplete two-degree-of-freedom(2-DoF) sense mode system of the micro-gyroscope into a complete 2-DoF system. Afterward, according to the given nonlinear coefficient of stiffness of drive mode, the structure size of driving micro-beams was designed to obtain a nonlinear micro-gyroscope with controllable stiffness.
View Article and Find Full Text PDFThe dynamic equations of a four-degree-of-freedom micro gyroscope system were developed considering the nonlinearity of driving stiffness, the primary resonance, and the 1:1 internal resonance. Then, the perturbation analysis was carried out using the method of multiple scales. The influence of stiffness nonlinearity and system parameters on micro-gyro dynamic characteristics, output sensitivity, detection bandwidth, and working stability were discussed based on the analytic and numerical solutions of the dynamic equations.
View Article and Find Full Text PDFA class of bipolar electrostatically actuated micro-resonators is presented in this paper. Two parametric equations are proposed for changing the microbeam shape of the upper and lower sections. The mechanical properties of a micro-resonator can be enhanced by optimizing the two section parameters.
View Article and Find Full Text PDFMicromachines (Basel)
January 2018
The micro-electro-mechanical system (MEMS) resonator developed based on surface processing technology usually changes the section shape either due to excessive etching or insufficient etching. In this paper, a section parameter is proposed to describe the microbeam changes in the upper and lower sections. The effect of section change on the mechanical properties is studied analytically and verified through numerical and finite element solutions.
View Article and Find Full Text PDF