Water confined or constrained in a cellular environment can exhibit a diverse structural and dynamical role and hence will affect the self-assembly behavior of biomolecules. Herein, the role of water in the formation of l-phenyl-alanine crystals and amyloid fibrils was investigated. A microemulsion biomimetic system with controllable water pool size was employed to provide a microenvironment with different types of water, which was characterized by small-angle X-ray scattering, attenuated total reflectance-Fourier transform infrared spectroscopy and differential scanning calorimetry.
View Article and Find Full Text PDFTo understand the existence of complex meso-sized solute-rich clusters, which challenge the understanding of phases and phase equilibria, the formation and stabilization mechanisms of clusters in solution during nucleation of crystals and the associated physico-chemical rules are studied in detail. An essential part of the mechanism is the formation of long-lived oligomers between solute molecules. By means of density functional theory simulation and nuclear magnetic resonance experiments, this work showed that the oligomers in solution tend to be π-π stacking dimers.
View Article and Find Full Text PDFAs the first step in the crystallization process, nucleation has been studied by many researchers. In this work, phenacetin (PHEN) was selected as a model compound to investigate the relationship between the solvent and nucleation kinetics. Induction times at different supersaturation in six solvents were measured.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
October 2019
As one of the most important phenomena in crystallization, the crystal nucleation process has always been the focus of research. In this work, influences of pre-assembly species and the desolvation process on the crystal nucleation process were studied. p-Nitrobenzoic acid (PNBA) was taken as a model compound to investigate the relationship between solution chemistry and nucleation kinetics in seven different solvents.
View Article and Find Full Text PDFIncreasing evidence has shown that nucleation pathways involving disordered pre-nucleation species exist in the nucleation process of many types of solid state products, especially inorganic solid state products. Studying the thermodynamic and kinetic properties of these pre-nucleation species is crucial to understand and control the nucleation process of solid state products. In this work, the evolution pathway of molecular or supramolecular structures during the nucleation process was investigated by using 2-cyano-4'-methylbiphenyl (OTBN) as a model compound.
View Article and Find Full Text PDFBackground: In the pharmaceutical field, it is vital to ensure a consistent product containing a single solid-state form of the active pharmaceutical ingredient (API) in the drug product. However, some APIs are suffering from the risk of transformation of their target forms during processing, formulation and storage.
Methods: The purpose of this review is to summarize the relevant category of excipients and demonstrate the availability and importance of using excipients as a key strategy to manipulate pharmaceutical polymorphic transformation.
In this article, the solution-mediated polymorphic transformation of rifampicin was investigated and simulated in 3 solvents at 30°C. The solid-state form I and form II of rifampicin was characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). To explore the relative stability, solubility data of form I and form II of rifampicin in butan-1-ol were determined using a dynamical method.
View Article and Find Full Text PDF