Publications by authors named "Shuyang Chai"

Baluns are crucial in MRI RF coils, essential for minimizing common-mode currents, maintaining signal-to-noise ratio, and ensuring patient safety. This paper introduces the innovative float solenoid balun, based on the renowned solenoid cable trap, and conducts a comparative analysis with the widely used float bazooka balun. Leveraging robust inductive coupling between the cable shield and float resonator, the float solenoid balun offers compact dimensions and post-installation adjustability.

View Article and Find Full Text PDF

Purpose: There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design.

View Article and Find Full Text PDF

Flexible coils offer improved patient comfort and better imaging quality. However, rigid and bulky baluns in RF coils limit flexibility and manufacturing. A miniaturized and flexible balun design was proposed to address this issue.

View Article and Find Full Text PDF

Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil.

View Article and Find Full Text PDF

Inductively coupled RF coils are an inexpensive and simple method to realize wireless RF coils in MRI. They are low cost and can greatly ease the MR scan setup and improve patient comfort, since they do not require bulky components such as cables, baluns, preamplifiers, and connectors. Previous works have typically used single-layer loops as wireless coils.

View Article and Find Full Text PDF