Ultralarge virtual chemical spaces have emerged as a valuable resource for drug discovery, providing access to billions of make-on-demand compounds with high synthetic success rates. Chemical language models can potentially accelerate the exploration of these vast spaces through direct compound generation. However, existing models are not designed to navigate specific virtual chemical spaces and often overlook synthetic accessibility.
View Article and Find Full Text PDFGeneral anesthetics are indispensable in modern medicine because they induce a reversible loss of consciousness and sensation in humans. On the other hand, their molecular mechanisms of action have not yet been elucidated. Several studies have identified the main targets of some general anesthetics.
View Article and Find Full Text PDFBackground: Three-dimensional structures of protein-ligand complexes provide valuable insights into their interactions and are crucial for molecular biological studies and drug design. However, their high-dimensional and multimodal nature hinders end-to-end modeling, and earlier approaches depend inherently on existing protein structures. To overcome these limitations and expand the range of complexes that can be accurately modeled, it is necessary to develop efficient end-to-end methods.
View Article and Find Full Text PDF