Publications by authors named "Shuxue Zhou"

Transparent superhydrophobic coatings hold significant potential for applications such as windows and reflectors. However, issues such as fragility and high haze have limited their practicality. Drawing inspiration from dragonfly structures, we developed a transparent superhydrophobic coating by etching the polystyrene microsphere array semiembedded on a silicon oxide matrix and subsequently depositing the methyltrichlorosilane-derived nanofilaments.

View Article and Find Full Text PDF

Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, CuO nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized.

View Article and Find Full Text PDF

Current environmentally friendly marine antifouling (AF) coatings are mainly polymeric with a relatively low hardness. Hard sol-gel-derived AF coatings for underwater robot-cleaning are seldom used. In this work, two new organoalkoxysilanes, , (-methoxyacylethyl)-3-aminopropyltriethoxysilane and 2-(2-hydroxy-3-(3-(trimethoxysilyl)propoxy)propyl)benzo[]isothiazol-3(2)-one, were synthesized by a facile method.

View Article and Find Full Text PDF

Hypothesis: The Pickering emulsion approach has been frequently employed to fabricate various emulsions. However, the direct formation of cross-linked polymer films from Pickering emulsions and double functions (emulsified and mechanical reinforcement) of Pickering agents have not been sufficiently reported.

Experiments: Fumed silica was co-modified with vinyltrimethoxysilane (VTMS) and hexamethyl disilylamine (HMDS) and was further adopted to emulsify vinyl or hydrogen dimethicone.

View Article and Find Full Text PDF

Confronting the complexity of marine biofouling, no single ecofriendly technology has been reported for efficient anti-biofouling. Combination of multiple antifouling factors should be one of the strategies for strengthening the anti-biofouling performance. Here we synthesized quaternary ammonium modified SiO nanoparticles (QAS-SiO) and incorporated them into self-polishing polymer (SP) to get the coatings combining self-renewal ability, micro-nano structured topography, and bactericidal function.

View Article and Find Full Text PDF

Polysiloxane-based artificial skins are able to emulate the mechanical and barrier performance of human skin. However, they are usually fabricated in vitro, restricting their diverse applications on human body. Herein, we presented one-component waterborne cross-linkable polysiloxane coatings prepared from emulsified vinyl dimethicone, emulsified hydrogen dimethicone, and Karstedt catalyst capsules that were first synthesized by solvent evaporation method.

View Article and Find Full Text PDF

Creating an artificial surface, mimicking a live fish scale that repels oil underwater and with self-healing properties, would be significant for the development of nontoxic marine antifouling coatings. Here, we report a seawater-induced strategy to create in situ an underwater superoleophobic surface, starting from the coatings of a self-polishing polymer and seawater-responsive polymer-grafted SiO nanoparticles. The coatings' surfaces were able to renew in artificial seawater through the hydrolysis of the superficial self-polishing polymer and its subsequent dissolution.

View Article and Find Full Text PDF

In many environments, biofilms are a major mode and an emergent form of microbial life. Biofilms play crucial roles in biogeochemical cycling and invertebrate recruitment in marine environments. However, relatively little is known about how marine biofilms form on different substrata and about how these biofilms impact invertebrate recruitment.

View Article and Find Full Text PDF

Dual-porosity hollow carbon spheres (DPHCs) with small mesopores (2-4 nm) and large through-holes (20-30 nm) in shells were successfully synthesized using colloidal silica as the template, small silica nanoparticles as nanomasks, and nontoxic dopamine as the carbon precursor followed by post-carbonization and etching. The synthesized DPHCs were further oxidized to be hydrophilic and then used to simultaneously deliver the protein bovine serum albumin (21 × 4 × 14 nm) and the small molecule doxorubicin (<1 nm), which exhibited a high loading capacity of 689.4 and 1421.

View Article and Find Full Text PDF

Hydro- and oleophobic (namely, omniphobic) coatings or surfaces have many important applications, but tremendous challenges in fabrication aspects still remain. Herein, we report a bioinspired design and nanofabrication of three-dimensional (3D) tribrachia-post arrays with re-entrant geometry (3D TPARG) for superhydrophobic and oleophobic polymer films or surfaces. By simply controlling the temperatures and time to treat silica colloidal templates, we can readily fabricate 3D ordered polymer arrays of tribrachia-posts or hexagonal tribrachia-posts with re-entrant geometries that resemble the skin of a springtail insect after the template is removed.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus.

View Article and Find Full Text PDF

The optical microscope is a widely used real-time investigation tool, but usually suffers from low resolution due to the Abbe diffraction limit. Herein, we design and successfully synthesize ZrO/polymer hybrid colloidal microspheres with as high as 47.5 wt % inorganic nanoparticles by suspension polymerization of 9,9'-bis[4-(2-acryloyloxyethyloxy)phenyl]fluorene (BAEPF).

View Article and Find Full Text PDF

Artificial special wetting surfaces have drawn much interest due to their important applications in many fields. Nevertheless, tremendous challenges still remain for the fabrication of wetting surfaces with durable and self-healing properties. Here, recent progress of durable, self-healing wetting surfaces is highlighted by discussing the fabrications of several typical wetting surfaces including superhydrophobic surfaces, superamphiphobic surfaces, underwater superoleophobic surfaces, and high hydrophilic antifouling surfaces based on expertise and related research experience.

View Article and Find Full Text PDF

Marine biofouling has been plaguing people for thousands of years. While various strategies have been developed for antifouling (including superoleophobic) coatings, none of these exhibits self-healing properties because the bestowal of a zoetic self-repairing function to lifeless artificial water/solid interfacial materials is usually confronted with tremendous challenges. Here, we present a self-repairing underwater superoleophobic and antibiofouling coating through the self-assembly of hydrophilic polymeric chain modified hierarchical microgel spheres.

View Article and Find Full Text PDF

Synthesis of hybrid colloidal particles with complex and hierarchical structures is attracting much interest theoretically and technically in recent years, but still remains a tremendous challenge. Here, we present a mild and controllable wet-chemical method for the synthesis of silver nanocube (Ag NC)-organosilica hybrid particles with finely tuned numbers (with one, two, three, four, five, or six) and sizes of organosilica petals, by simply controlling the affinity with Ag NC/nature, amount, and prehydrolysis process of alkoxysilanes. The morphologies of hybrid colloidal particles have an obvious influence on the surface wettability of the hybrid particle-based films.

View Article and Find Full Text PDF

This paper presents a facile method to fabricate volumetric light diffusing films with high transmittance and haze simultaneously by mimicking the micro- and nanostructure of compound eyes. Strawberry-like polymethyl methacrylate/SiO2 composite microspheres were first prepared via the electrostatic attraction between positively charged PMMA spheres and negatively charged SiO2 nanoparticles, and further blended with polyacrylate latex to produce light diffusing coatings. A novel light diffusing film with hemispherical surface was built by casting the light diffusing coatings on optical-grade PET film.

View Article and Find Full Text PDF

This study presents a facile and general method for fabrication of carbon spheres with tunable morphologies based on the sol-gel reaction of a novel polymeric carbon precursor. The carbon precursor was fabricated by the synthesis of resole, a low-molecular weight polymer of phenol and formaldehyde, and then the modification with poly(ethylene glycol) monomethyl ether (PEG). By turning the modification degree of resole with different amounts of PEG and the hydrolysis and condensation reactions of this precursor, carbon spheres with various morphologies, including regular spheres, hollow spheres of different pore sizes, and raspberry- and peanut-like spheres, were produced easily.

View Article and Find Full Text PDF

A self-repairing superhydrophobic organic coating comprising polystyrene, fluorinated poly(methylsiloxane), fluorinated alkyl silane modified silica nanoparticles and photocatalytic titania nanoparticles shows self-repairing ability after mechanical damage, photocatalytic self-cleaning performance, and thus long-term outdoor durability.

View Article and Find Full Text PDF

This paper reports the first nickel hydroxide-manganese dioxide-reduced graphene oxide (Ni(OH)2-MnO2-RGO) ternary hybrid sphere powders as supercapacitor electrode materials. Due to the abundant porous nanostructure, relatively high specific surface area, well-defined spherical morphology, and the synergetic effect of Ni(OH)2, MnO2, and RGO, the electrodes with the as-obtained Ni(OH)2-MnO2-RGO ternary hybrid spheres as active materials exhibited significantly enhanced specific capacitance (1985 F·g(-1)) and energy density (54.0 Wh·kg(-1)), based on the total mass of active materials.

View Article and Find Full Text PDF

This paper presents a facile method to synthesize monodisperse SrTiO3 hollow spheres with one or two openings through a template-assisted approach. These hollow spheres were further self-assembled into densely packed nanofilms at a "hexane-water" interface. TEM, SEM, HRTEM, XRD, etc.

View Article and Find Full Text PDF

Inorganic hollow spheres have wide, important applications due to their unique structure, controllable morphology, and composition. Recent developments in the application and performance of inorganic hollow spheres in solar cells, UV photodectors, gas sensors, and supercapacitors are discussed. For each inorganic hollow sphere based device, a critical comment is given based on knowledge and related research experience.

View Article and Find Full Text PDF

In this paper, monodisperse poly(styrene-co-acrylmide) (PSAM)/Nb2O5 hybrid hollow spheres were synthesized using a hollowing mechanism similar to the Kirkendall effect. When these hybrid hollow spheres were calcinated at different temperatures, totally different structures, pseudohexagonal TT phase hollow Nb2O5 spheres, and orthorhombic T phase short rods were obtained. Both of them exhibited stronger photocatalytic activity than the commercial Nb2O5, especially the as-obtained Nb2O5 hollow spheres displayed significantly enhanced photocatalytic property and auto-accelerated photocatalytic kinetics compared to the commercial TiO2 (P25).

View Article and Find Full Text PDF

This study reports novel water dispersable organic nanowires based on the assembly of aniline oligomers. Due to their unique properties, these nanowires can be used as templates for fabrication of various kinds of freestanding and open-ended oxide nanotubes.

View Article and Find Full Text PDF

Although the concept of Janus particles was raised in the early 1990s, the related research has not attracted considerable interest until recently due to the special properties and applications of these colloidal particles as well as the advances in new fabrications. Janus particles can be divided into three categories: polymeric, inorganic, and polymeric-inorganic, and each kind of Janus particles can be spherical, dumbbell-like, half raspberry-like, cylindrical, disk-like, or any of a variety of other shapes. Different Janus particles may share common preparation principles or require specific fabrication processes, and may have different assembly behaviours and properties.

View Article and Find Full Text PDF

Two kinds of homogeneously dispersed aniline oligomer assemblies, namely "cross" and "needle" morphologies, can be conveniently synthesized on a large scale in a near-neutral aqueous medium using sodium dodecylsulfate (SDS) as a surfactant. The effects of oxidant type, premixing time, amount of SDS, monomer concentration, and temperature on the final morphology were investigated in detail. A possible mechanism for the formation of both "cross" and "needle" structures is given.

View Article and Find Full Text PDF