Micromachines (Basel)
February 2023
sEMG-based pattern recognition commonly assumes a limited number of target categories, and the classifiers often predict each target category depending on probability. In wrist rehabilitation training, the patients may make movements that do not belong to the target category unconsciously. However, most pattern recognition methods can only identify limited patterns and are prone to be disturbed by abnormal movement, especially for wrist joint movements.
View Article and Find Full Text PDFEndovascular robotic systems have been applied in robot-assisted interventional surgery to improve surgical safety and reduce radiation to surgeons. However, this surgery requires surgeons to be highly skilled at operating vascular interventional surgical robot. Virtual reality (VR) interventional training systems for robot-assisted interventional surgical training have many advantages over traditional training methods.
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
Endovascular surgery is a high-risk operation with limited vision and intractable guidewires. At present, endovascular surgery robot (ESR) systems based on force feedback liberates surgeons' operation skills, but it lacks the ability to combine force perception with vision. In this study, a deep learning-based guidewire-compliant control method (GCCM) is proposed, which guides the robot to avoid surgical risks and improve the efficiency of guidewire operation.
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
A dynamic path-planning algorithm based on a general constrained optimization problem (GCOP) model and a sequential quadratic programming (SQP) method with sensor input is proposed in this paper. In an unknown underwater space, the turtle-inspired amphibious spherical robot (ASR) can realise the path-planning control movement and achieve collision avoidance. Due to the special underwater environments, thrusters and diamond parallel legs (DPLs) are installed in the lower hemisphere to realise accurate motion control.
View Article and Find Full Text PDFComput Intell Neurosci
December 2022
Generalized zero-shot learning (GZSL) aims to classify seen classes and unseen classes that are disjoint simultaneously. Hybrid approaches based on pseudo-feature synthesis are currently the most popular among GZSL methods. However, they suffer from problems of negative transfer and low-quality class discriminability, causing poor classification accuracy.
View Article and Find Full Text PDFVascular interventional surgery is a typical method for diagnosing and treating cardio-cerebrovascular diseases. However, a surgeon is exposed to significant X-radiation exposure when the operation is conducted for a long period of time. A vascular intervention surgical robotic system for assisting the surgeon is a promising approach to address the aforementioned issue.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
August 2022
As a promising alternative to hospital-based manual therapy, robot-assisted tele-rehabilitation therapy has shown significant benefits in reducing the therapist's workload and accelerating the patient's recovery process. However, existing telerobotic systems for rehabilitation face barriers to implementing appropriate therapy treatment due to the lack of effective therapist-patient interactive capabilities. In this paper, we develop a home-based tele-rehabilitation system that implements two alternative training methods, including a haptic-enabled guided training that allows the therapist to adjust the intensity of therapeutic movements provided by the rehabilitation device and a surface electromyography (sEMG)-based supervised training that explores remote assessment of the patient's kinesthetic awareness.
View Article and Find Full Text PDFRobot-assisted technology is often used to perform endovascular catheterization surgeries, which generally depend on the flexible operability and the accurate force feedback of a robotic system. In this paper, an endovascular catheterization robotic system (ECRS) was developed to improve collaborative operation and haptic force feedback. A couple of operating handles were designed to maximize the use of the natural operations of surgeons on the master side, which is a flexible and ergonomic device.
View Article and Find Full Text PDFMicromachines (Basel)
January 2022
Interventional surgical robots are widely used in neurosurgery to improve surgeons' working environment and surgical safety. Based on the actual operational needs of surgeons' feedback during preliminary in vivo experiments, this paper proposed an isomorphic interactive master controller for the master-slave interventional surgical robot. The isomorphic design of the controller allows surgeons to utilize their surgical skills during remote interventional surgeries.
View Article and Find Full Text PDFUnderwater target acquisition and identification performed by manipulators having broad application prospects and value in the field of marine development. Conventional manipulators are too heavy to be used for small target objects and unsuitable for shallow sea working. In this paper, a bio-inspired Father-Son Underwater Robot System (FURS) is designed for underwater target object image acquisition and identification.
View Article and Find Full Text PDFThe surface electromyography (sEMG) signal is widely used as a control source of the upper limb exoskeleton rehabilitation robot. However, the traditional way of controlling the exoskeleton robot by the sEMG signal requires one to specially extract and calculate for complex sEMG features. Moreover, due to the huge amount of calculation and individualized difference, the real-time control of the exoskeleton robot cannot be realized.
View Article and Find Full Text PDFIn this paper, a novel mirror visual feedback-based (MVF) bilateral neurorehabilitation system with surface electromyography (sEMG)-based patient active force assessment was proposed for upper limb motor recovery and improvement of limb inter-coordination. A mirror visual feedback-based human-robot interface was designed to facilitate the bilateral isometric force output training task. To achieve patient active participant assessment, an sEMG signals-based elbow joint isometric force estimation method was implemented into the proposed system for real-time affected side force assessment and participation evaluation.
View Article and Find Full Text PDFMicromachines (Basel)
November 2021
In vascular interventional surgery, surgeons operate guidewires and catheters to diagnose and treat patients with the assistance of the digital subtraction angiography (DSA). Therefore, the surgeon will be exposed to X-rays for extended periods. To protect the surgeon, the development of a robot-assisted surgical system is of great significance.
View Article and Find Full Text PDFMicromachines (Basel)
October 2021
Given that the current microrobot cannot achieve fixed-point and quantitative drug application in the gastrointestinal (GI) tract, a targeted drug delivery microrobot is proposed, and its principle and characteristics are studied. Through the control of an external magnetic field, it can actively move to the affected area to realize the targeted drug delivery function. The microrobot has a cam structure connected with a radially magnetized permanent magnet, which can realize two movement modes: movement and targeted drug delivery.
View Article and Find Full Text PDFA teleoperated robotic catheter operating system is a solution to avoid occupational hazards caused by repeated exposure radiation of the surgeon to X-ray during the endovascular procedures. However, inadequate force feedback and collision detection while teleoperating surgical tools elevate the risk of endovascular procedures. Moreover, surgeons cannot control the force of the catheter/guidewire within a proper range, and thus the risk of blood vessel damage will increase.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
May 2021
Bilateral rehabilitation allows patients with hemiparesis to exploit the cooperative capabilities of both arms to promote the recovery process. Although various approaches have been proposed to facilitate synchronized robot-assisted bilateral movements, few studies have focused on addressing the varying joint stiffness resulting from dynamic motions. This paper presents a novel bilateral rehabilitation system that implements a surface electromyography (sEMG)-based stiffness control to achieve real-time stiffness adjustment based on the user's dynamic motion.
View Article and Find Full Text PDFMed Biol Eng Comput
October 2020
Capsule endoscopy is a new type of technology in the diagnosis and treatment of digestive diseases, with painless and low invasive features. However, current capsule robots have many problems, such as over-sized, single function and lack of active locomotion control. This study proposed and designed a new wireless modular capsule robotic system in pipe.
View Article and Find Full Text PDFAn accurate assessment of surgical operation skills is essential for improving the vascular intervention surgical outcome and the performance of endovascular surgery robots. In existing studies, subjective and objective assessments of surgical operation skills use a variety of indicators, such as the operation speed and operation smoothness. However, the vascular conditions of particular patients have not been considered in the assessment, leading to deviations in the evaluation.
View Article and Find Full Text PDFMaster-slave endovascular interventional surgery (EIS) robots have brought revolutionary advantages to traditional EIS, such as avoiding X-ray radiation to the surgeon and improving surgical precision and safety. However, the master controllers of most of the current EIS robots always lead to bad human-machine interaction, because of the difference in nature between the rigid operating handle and the flexible medical catheter used in EIS. In this paper, a noncontact detection method is proposed, and a novel master controller is developed to realize real-time detection of surgeon's operation without interference to the surgeon.
View Article and Find Full Text PDFMicromachines (Basel)
January 2020
Amphibious Spherical Robots (ASRs) use an electric field to communicate and collaborate effectively in a turbid water of confined spaces where other mode communication modalities failed. This paper proposes an embedded architecture formation strategy for a group of turtle-inspired amphibious robots to maintain a long distance-parameterized path based on dynamic visual servoing. Inspired by this biological phenomenon, we design an artificial multi-robot cooperative mode and explore an electronic communication and collaborate devices, the control method is based in particular on underwater environment and also conduct a detailed analysis of control motion module.
View Article and Find Full Text PDFTimely and accurate auxiliary diagnosis of intracranial aneurysm can help radiologist make treatment plans quickly, saving lives and cutting costs at the same time. At present, Digital Subtraction Angiography (DSA) is the gold standard for the diagnosis of intracranial aneurysm, but as radiologists interpret those imaging sequences frame by frame, misdiagnosis might occur. The utilization of computer-aided diagnosis (CAD) can ease the burdens of radiologists and improve the detection accuracy of aneurysms.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2019
Interventional surgery is widely used in the treatment of cardiovascular and cerebrovascular diseases, and the development of surgical robots can greatly reduce the fatigue and radiation risks brought to surgeons during surgery. In this paper, we present a novel interventional surgical robot which allows surgeons to fully use their operating skills during remote control. Fuzzy control theory is used to guarantee control precision during the master-slave operation.
View Article and Find Full Text PDFPerformance of robot-assisted endovascular surgery (ES) remains highly dependent on an individual surgeon's skills, due to common adoption of master-slave robotic structure. Surgeons' skill modeling and unstructured surgical state perception pose prohibitive challenges for an autonomous ES robot. In this paper, a novel convolutional neural network (CNN)-based framework is proposed to address these challenges for navigation of an ES robot based on surgeons' skill learning.
View Article and Find Full Text PDFThrusters are the bottom actuators of the amphibious spherical robot, and play an important role in the motion control of these robots. To realize accurate motion control, a thrust model for a new water-jet thruster based on hydrodynamic analyses is proposed in this paper. First, the hydrodynamic characteristics of the new thruster were numerically analyzed using computational fluid dynamics (CFD) commercial software CFX.
View Article and Find Full Text PDF