Timely and effective detection of quality attributes during drying control is essential for enhancing the quality of fruit processing. Consequently, this study aims to employ hyperspectral imaging technology for the non-destructive monitoring of soluble solids content (SSC), titratable acidity (TA), moisture, and hardness in jujubes during hot air drying. Quality parameters were measured at drying temperatures of 55 °C, 60 °C, and 65 °C.
View Article and Find Full Text PDFThe development of nondestructive technology for the detection of seed viability is challenging. In this study, to establish a green and effective method for the viability assessment of single maize seeds, a two-stage seed viability detection method was proposed. The catalase (CAT) activity and malondialdehyde (MDA) content were selected as the most key biochemical components affecting maize seed viability, and regression prediction models were developed based on their hyperspectral information and a data fusion strategy.
View Article and Find Full Text PDFHitherto, the intelligent detection of black tea fermentation quality is still a thought-provoking problem because of one-side sample information and poor model performance. This study proposed a novel method for the prediction of major chemical components including total catechins, soluble sugar and caffeine using hyperspectral imaging technology and electrical properties. The multielement fusion information were used to establish quantitative prediction models.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2023
The most widespread, toxic, and harmful toxin is aflatoxins B1 (AFB1). The fluorescence hyperspectral imaging (HSI) system was employed for AFB1 detection in this study. This study developed the under sampling stacking (USS) algorithm for imbalanced data.
View Article and Find Full Text PDFAt present, the apple grading system usually conveys apples by a belt or rollers. This usually leads to low hardness or expensive fruits being bruised, resulting in economic losses. In order to realize real-time detection and classification of high-quality apples, separate fruit trays were designed to convey apples and used to prevent apples from being bruised during image acquisition.
View Article and Find Full Text PDFPredicting the soluble solid content (SSC) of peaches based on visible/near infrared spectroscopy has attracted widespread attention. Due to the anisotropic structure of peach fruit, spectra collected from different orientations and regions of peach fruit will bring variations in the performance of SSC prediction models. In this study, the effects of spectra collection orientations and regions on online SSC prediction models for peaches were investigated.
View Article and Find Full Text PDFThe aged seeds have a significant influence on seed vigor and corn growth. Therefore, it is vital for the planting industry to identify aged seeds. In this study, hyperspectral reflectance imaging (1,000-2,000 nm) was employed for identifying aged maize seeds using seeds harvested in different years.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2022
As an essential factor in quality assessment of maize seeds, variety purity profoundly impacts final yield and farmers' economic benefits. In this study, a novel method based on Raman hyperspectral imaging system was applied to achieve variety classification of coated maize seeds. A total of 760 maize seeds including 4 different varieties were evaluated.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2022
The rapid and non-destructive detection of moisture in withering leaves is an unsolved problem because the leaves are stacked together and have random orientation. To address this issue, this study aimed to establish more robust and accurate models. The performance of front side, back side and multi-region models were compared, and the front side model showed the worst transferability.
View Article and Find Full Text PDFWatercore is an internal physiological disorder affecting the quality and price of apples. Rapid and non-destructive detection of watercore is of great significance to improve the commercial value of apples. In this study, the visible and near infrared (Vis/NIR) full-transmittance spectroscopy combined with analysis of variance (ANOVA) method was used for online detection of watercore apples.
View Article and Find Full Text PDFMaize mildew is a common phenomenon and it is essential to detect the mildew of a single maize kernel and prevent mildew from spreading around. In this study, a line-scanning Raman hyperspectral imaging system was applied to detect fungal spore quantity of a single maize kernel. Raman spectra were extracted while textural features were obtained to depict the maize mildew.
View Article and Find Full Text PDFDecay is a serious problem in citrus storage and transportation. However, the automatic detection of decayed citrus remains a problem. In this study, the long wavelength near-infrared (LW-NIR) hyperspectra reflectance images (1000-1850 nm) of oranges were obtained, and an effective method to detect decayed citrus was proposed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2021
Moisture content (MC) is one of the most important factors for assessment of seed quality. However, the accurate detection of MC in single seed is very difficult. In this study, single maize seed was used as research object.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2021
In this study Vis/NIR spectroscopy was applied to evaluate soluble solids content (SSC) of tomato. A total of 168 tomato samples with five different maturity stages, were measured by two developed systems with the wavelength ranges of 500-930 nm and 900-1400 nm, respectively. The raw spectral data were pre-processed by first derivative and standard normal variate (SNV), respectively, and then the effective wavelengths were selected using competitive adaptive reweighted sampling (CARS) and random frog (RF).
View Article and Find Full Text PDFTwo hyperspectral imaging (HSI) systems, visible/near infrared (Vis/NIR, 304-1082 nm) and short wave infrared (SWIR, 930-2548 nm), were used for the first time to comprehensively predict the changes in quality of wheat seeds based on three vigour parameters: germination percentage (GP, reflecting the number of germinated seedling), germination energy (GE, reflecting the speed and uniformity of seedling emergence), and simple vigour index (SVI, reflecting germination percentage and seedling weight). Each sample contained a small number of wheat seeds, which were obtained by high temperature and humidity-accelerated aging (0, 2, and 3 days) to simulate storage. The spectra of these samples were collected using HSI systems.
View Article and Find Full Text PDFCurrently, the detection of blueberry internal bruising focuses mostly on single hyperspectral imaging (HSI) systems. Attempts to fuse different HSI systems with complementary spectral ranges are still lacking. A push broom based HSI system and a liquid crystal tunable filter (LCTF) based HSI system with different sensing ranges and detectors were investigated to jointly detect blueberry internal bruising in the lab.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2018
Rapid and visual detection of the chemical compositions of plant seeds is important but difficult for a traditional seed quality analysis system. In this study, a custom-designed line-scan Raman hyperspectral imaging system was applied for detecting and displaying the main chemical compositions in a heterogeneous maize seed. Raman hyperspectral images collected from the endosperm and embryo of maize seed were acquired and preprocessed by Savitzky-Golay (SG) filter and adaptive iteratively reweighted Penalized Least Squares (airPLS).
View Article and Find Full Text PDFHyperspectral imaging technology was used to investigate the effect of various peel colors on soluble solids content (SSC) prediction model and build a SSC model insensitive to the color distribution of apple peel. The SSC and peel pigments were measured, effective wavelengths (EWs) of SSC and pigments were selected from the acquired hyperspectral images of the intact and peeled apple samples, respectively. The effect of pigments on the SSC prediction was studied and optimal SSC EWs were selected from the peel-flesh layers spectra after removing the chlorophyll and anthocyanin EWs.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
October 2016
Maize is among the most important economic corps in China while moisture content is a critical parameterin the process of storage and breeding. To measure the moisture content in maize kernel, a near-infrared hyperspectral imaging system has been built to acquire reflectance images from maize kernel samples in the spectral region between 1 000 and 2 500 nm. Near-infrared hyperspectral information of full surface and embryo of maize kernel were firstly extracted based on band ratio coupled with a simple thresholding method and the spectra analysis between moisture content in maize kernel and embryo was performed.
View Article and Find Full Text PDFNon-destructive detection for soluble solids content (SSC) is important to improve watermelon’s internal quality, which attracts more and more attention from consumers. In order to realize the precise detection for SSC of mini watermelon’s whole surface by using Near-infrared (NIR) spectroscopy and reduce the influence of detective position variability on the accuracy of NIR prediction model for SSC, the diffused transmission spectra and soluble solids content were collected from three different detective positions of ‘jingxiu’ watermelon, including the equator, calyx and stem. The prediction models of single detective position and mixed three detective positions for SSC were established with Partial least square (PLS).
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
October 2014
The quality and safety of fruits and vegetables are the most concerns of consumers. Chemical analytical methods are traditional inspection methods which are time-consuming and labor intensive destructive inspection techniques. With the rapid development of imaging technique and spectral technique, hyperspectral imaging technique has been widely used in the nondestructive inspection of quality and safety of fruits and vegetables.
View Article and Find Full Text PDFIn order to detect the soluble solids content(SSC)of apple conveniently and rapidly, a ring fiber probe and a portable spectrometer were applied to obtain the spectroscopy of apple. Different wavelength variable selection methods, including unin- formative variable elimination (UVE), competitive adaptive reweighted sampling (CARS) and genetic algorithm (GA) were pro- posed to select effective wavelength variables of the NIR spectroscopy of the SSC in apple based on PLS. The back interval LS- SVM (BiLS-SVM) and GA were used to select effective wavelength variables based on LS-SVM.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
August 2014
To improve the precision and robustness of the NIR model of the soluble solid content (SSC) on pear. The total number of 160 pears was for the calibration (n=120) and prediction (n=40). Different spectral pretreatment methods, including standard normal variate (SNV) and multiplicative scatter correction (MSC) were used before further analysis.
View Article and Find Full Text PDF