Publications by authors named "Shuwen Zhao"

Article Synopsis
  • * Average concentrations of various PTEs were measured, with arsenic (As) and zinc (Zn) showing higher levels, while cadmium (Cd) was noted for its high bioavailability.
  • * A risk assessment suggests a 60.83% chance that these PTEs could harm aquatic life, emphasizing the urgent need for more research on the ecological effects and strategies to mitigate pollution.
View Article and Find Full Text PDF
Article Synopsis
  • Marine pollutants, particularly potentially toxic elements (PTEs), are becoming a major threat to the Beibu Gulf's environment and its fishery resources due to their harmful effects and ability to accumulate in organisms.
  • A study collected 18 species of seafood invertebrates from the Gulf and analyzed the levels of nine PTEs, finding that most were within safety limits, except for arsenic (As).
  • The research indicated a significant increase in the concentration of As and chromium (Cr) at higher trophic levels, and it was determined that eating cephalopod, shellfish, and sea cucumber carries a greater risk to human health compared to shrimp and crab.
View Article and Find Full Text PDF

The widespread prevalence of microplastics (MPs) in the environment poses concerns as they are vectors of antibiotic resistance genes (ARGs). The relationships between antibiotic resistomes and MPs remain unexplored in soil which was considered as the reservoirs of MPs and ARGs. This study investigated the effects of polyvinyl chloride (PVC) MPs on soil bacterial communities and ARG abundance which soil samples sourced from 20 provinces across China.

View Article and Find Full Text PDF

The insufficient availability and activity of interfacial water remain a major challenge for alkaline hydrogen evolution reaction (HER). Here, we propose an "on-site disruption and near-site compensation" strategy to reform the interfacial water hydrogen bonding network via deliberate cation penetration and catalyst support engineering. This concept is validated using tip-like bimetallic RuNi nanoalloys planted on super-hydrophilic and high-curvature carbon nanocages (RuNi/NC).

View Article and Find Full Text PDF

There is an urgent need for faster, brighter, and more controllable scintillation materials in advanced nuclear medicine, high-energy physical experiments, and dark matter particle detection. Nevertheless, the trade-off between high emission efficiency and fast timing characteristics remains a common challenge in the entire optical field. To address this issue, we develop a composition engineering strategy that involves multisite selective doping.

View Article and Find Full Text PDF

We report chemical vapor deposition (CVD) synthesis of two quasi-one-dimensional (quasi-1D) polymorphs of BiSCl, denoted by y-BiSCl and r-BiSCl. The length of the CVD samples can reach about 0.4 mm.

View Article and Find Full Text PDF

Hexabromocyclododecanes (HBCDs) are legacy additive brominated flame retardant. In present study, the distribution, biomagnification and potential human health risk associated with HBCDs were investigated in six edible marine fish species collected from three bays in the Beibu Gulf, China, between March and October 2021. The concentration of HBCDs ranged from 0.

View Article and Find Full Text PDF

Biochar (BC) has been used to remove antibiotics from wastewater. Microplastics are emerging contaminants of wastewater. The capacities of microplastics for adsorbing antibiotics and the effects of microplastics of different types and particle sizes on antibiotic adsorption by BC have not been studied.

View Article and Find Full Text PDF

3-D Morphable model (3DMM) has widely benefited 3-D face-involved challenges given its parametric facial geometry and appearance representation. However, previous 3-D face reconstruction methods suffer from limited power in facial expression representation due to the unbalanced training data distribution and insufficient ground-truth 3-D shapes. In this article, we propose a novel framework to learn personalized shapes so that the reconstructed model well fits the corresponding face images.

View Article and Find Full Text PDF

Soil salinity is known to improve cadmium (Cd) mobility, especially in arid soils. However, the mechanisms involved in how salt stress-associated metabolic profiles participate in mediating Cd transport in the soil-plant system remain poorly understood. This study was designed to investigate the effects of salinity-induced changes in soil metabolites on Cd bioavailability.

View Article and Find Full Text PDF

Electrocatalytic water splitting to generate high-quality hydrogen is an attractive renewable energy storage technology; however, it is still far from becoming a real-world application. In this study, we developed an effective and stable nickel foam-supported FeP@CoMnP heterostructure electrocatalyst for overall water splitting. As expected, the as-obtained FeP@CoMnP/NF electrocatalyst exhibits superb bifunctional catalytic activity and only requires extremely low overpotentials of 53 and 249 mV to achieve a current density of 10 mA cm for the hydrogen and oxygen evolution reactions, respectively.

View Article and Find Full Text PDF

Aging of pollutants determines bioavailability and toxicity thresholds of environmental pollutants in soil. However, the ecotoxicity of chromium (Cr) rarely considers the effect of aging as well as soil properties. In order to explore the aging characteristics and establish their quantitative relationship with different soil properties, this study selected 7 soils with different properties through exogenous addition of Cr and determined its toxicity on barley root elongation.

View Article and Find Full Text PDF

The unsteady comprehensive system of pe + pH strongly affects the fate of Cd in paddy soils. However, the specific pe + pH threshold determining Cd bioavailability is largely unknown especially considering the roles of Fe and S reduction. The experiment set different water managements to obtain paddy soil samples with unstable pe + pH, and chemical analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterization were applied to reveal the dynamic process and mechanism about how Fe and S controlled Cd mobilization.

View Article and Find Full Text PDF

A mild, selective and redox-neutral Cp*Ir(III)- and Cp*Rh(III)-catalyzed C-H activation/annulation of salicylaldehydes with fluorovinyl tosylates is reported. The use of monofluorovinyl tosylate favors the synthesis of C2- and C3-substitution-free chromones C-H activation/β-F elimination/annulation, whereas difluorovinyl tosylate leads to the construction of C2-fluoroalkoxy chromones. Mild reaction conditions and good functional-group tolerance were observed.

View Article and Find Full Text PDF

The environmental risk threshold of a pollutant is a yardstick to measure soil environmental quality. The derivation of ecological risk thresholds of the heavy metal zinc (Zn) in soil environments based on up-to-date ecological risk assessments plays an important role in soil protection policy. According to regional soil classification, different representative soils with various degrees of acidity and alkalinity were selected, and a data set comprising ecotoxicities of Zn to 21 different test endpoints (plants, soil fauna, microorganisms, etc.

View Article and Find Full Text PDF

This study investigated the effects of different types of saline stress on the availability of cadmium (Cd) and bacterial growth. Changes in soil physicochemical properties and DTPA-Cd content as well as microbial responses after the addition of salts were measured. The addition of 18 g kg of salts with NaCl and NaSO increased the available Cd content by up to 17.

View Article and Find Full Text PDF

Currently, the scientific basis for establishing soil environmental criteria is lacking. In order to establish reasonable soil environmental criteria values suitable for soils with different properties, this study selected soils from 16 different sites to determine the toxicity threshold of Zn based on toxicity tests of barley root elongation. In addition, leaching treatments were set up in seven soils with different properties to eliminate the influence of the accompanying anions (Cl) on the determination of the Zn toxicity threshold.

View Article and Find Full Text PDF

Periodic flooding in paddy soils impacts redox behavior and induces variations in pe+pH levels. Manganese (Mn) is capable of reducing cadmium (Cd) uptake by rice. However, the processes involved in how Mn alters Cd mobilization under different pe+pH environments remain poorly understood.

View Article and Find Full Text PDF

Effect of Fe redox state caused by low soil pe+pH levels on Cd uptake by rice is unclear. Rice grown in pots of Cd-contaminated paddy soil were subjected to different irrigation regimes: flooding, intermittent flooding (Int-FL), and sustained soil moisture at 70% water holding capacity (WHC). Results showed low pe+pH (5.

View Article and Find Full Text PDF

The purpose of this study was to examine the efficacy of the algicidal bacterium Sagittula stellata on the cell lysis of Nannochloropsis oceanica, a microalga found in the marine environment, in order to extract intracellular valuables. Algicidal bacteria are capable of lysing algal cell walls while keeping lipids and proteins intact yet separated. We obtained these microbes from locations with consistent algae blooms and found that the bacterium Sagittula stellata displayed significant algicidal properties toward Nannochloropsis oceanica, achieving an algicidal rate of 80.

View Article and Find Full Text PDF

To investigate the safety, accuracy and indications of traditional and novel cortical bone screws placement for osteoporosis lumbar spine, 4 lumbar vertebra specimens (2 males and 2 females) were used for this study. After the computed tomography scanning data of the above anatomical specimens were three-dimensional (3D) reconstructed, one side of each anatomical specimen was randomly chosen to place traditional cortical bone screws, and the other side received novel technical placement. The safety screw trajectory was designed, and a 3D navigation template complementary to the surface anatomical structure of lumbar isthmus lateral margin-vertebral plate-spinous process part was established.

View Article and Find Full Text PDF

Traditional vanadium dioxide (VO) material faced severe challenges of low stability in acid, humid, and oxygenic environments, which hinder its real applications. Here, we report a facile improving process which can enhanced the stability of VO nanocrystals in the environments above. Ascorbic acid (AA), as an important antioxidant for organism in medicine and biology, was ingeniously used for enhancing the antioxidation abilities of inorganic material.

View Article and Find Full Text PDF

Vanadium dioxide is one kind of desirable infrared modulator for sensors because of its remarkable temperature-responsive infrared modulation ability via autogeneic metal-insulator transition. However, the detriments of poor chemical stability and narrow scope of extensive-researched application (e.g.

View Article and Find Full Text PDF

Hexagonal-phase NaGdF: Yb, Er upconversion nanocrystals (UCNCs) with tunable morphology and properties were successfully prepared via a thermal decomposition method. The influences of the adding sequence of the precursors on the morphology, chemical composition, luminescence and magnetic properties were investigated by transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), upconversion (UC) spectroscopy, and a vibrating sample magnetometer (VSM). It was found that the resulting nanocrystals, with different sizes ranging from 24 to 224 nm, are in the shape of spheres,  hexagonal plates and flakes; moreover, the composition percentage of Yb-Er and Gd ions was found to vary in a regular pattern with the adding sequence.

View Article and Find Full Text PDF