Publications by authors named "Shuvaev V"

RNA therapeutics are an emerging, powerful class of drugs with potential applications in a wide range of disorders. A central challenge in their development is the lack of clear pharmacokinetic (PK)-pharmacodynamic relationship, in part due to the significant delay between the kinetics of RNA delivery and the onset of pharmacologic response. To bridge this gap, we have developed a physiologically based PK/pharmacodynamic model for systemically administered mRNA-containing lipid nanoparticles (LNPs) in mice.

View Article and Find Full Text PDF

The neuroinflammatory cascade triggered by traumatic brain injury (TBI) represents a clinically important point for therapeutic intervention. Neuroinflammation generates oxidative stress in the form of high-energy reactive oxygen and nitrogen species, which are key mediators of TBI pathology. The role of the blood-brain barrier (BBB) is essential for proper neuronal function and is vulnerable to oxidative stress.

View Article and Find Full Text PDF

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume.

View Article and Find Full Text PDF

Unlabelled: After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium.

View Article and Find Full Text PDF

Diseases of the pulmonary alveolus, such as pulmonary fibrosis, are leading causes of morbidity and mortality, but exceedingly few drugs are developed for them. A major reason for this gap is that after inhalation, drugs are quickly whisked away from alveoli due to their high perfusion. To solve this problem, the mechanisms by which nano-scale drug carriers dramatically improve lung pharmacokinetics using an inhalable liposome formulation containing nintedanib, an antifibrotic for pulmonary fibrosis, are studied.

View Article and Find Full Text PDF

Background: Patients with hematologic diseases are at higher risk of the SARS-CoV-2 infection and more severe clinical outcomes of the coronavirus disease. CHRONOS19 is an observational prospective cohort study with the aim to determine the short and longer-term clinical outcomes, risk factors for disease severity and mortality, and rates of postinfectious immunity in patients with malignant and nonmalignant hematologic diseases and COVID-19.

Patients And Methods: Overall, 666 patients were enrolled in the study, of which 626 were included in the final data analysis.

View Article and Find Full Text PDF

Introduction: Tyrosine kinase inhibitor (TKI) therapy has greatly improved the prognosis of patients with chronic myeloid leukemia (CML), improving the survival expectancy of patients with chronic phase (CP) CML to that of the general population. However, despite these advances, nearly 50% of patients with CP CML experience failure to respond to frontline therapy, and most fail to respond to the subsequent second-line TKI. Treatment guidelines for patients failing second-line therapy are lacking.

View Article and Find Full Text PDF

Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5).

View Article and Find Full Text PDF
Article Synopsis
  • A key aim in nanomedicine is to improve drug targeting to specific cells and organs, which has been limited by poor efficiency and unintended clearance by the liver and spleen.
  • The DART (dual affinity to blood cells and target cells) approach improves targeting by using nanocarriers that first attach to red blood cells and then transfer to target cells in the lungs, resulting in nearly 70% of the injected dose reaching the target organ.
  • This method significantly enhances drug delivery effectiveness and selectivity, potentially benefiting various medical applications.
View Article and Find Full Text PDF

Current nucleoside-modified RNA lipid nanoparticle (modmRNA-LNP) technology has successfully paved the way for the highest clinical efficacy data from next-generation vaccinations against SARS-CoV-2 during the COVID-19 pandemic. However, such modmRNA-LNP technology has not been characterized in common pre-existing inflammatory or immune-challenged conditions, raising the risk of adverse clinical effects when administering modmRNA-LNPs in such cases. Herein, we induce an acute-inflammation model in mice with lipopolysaccharide (LPS) intratracheally (IT), 1 mg kg, or intravenously (IV), 2 mg kg, and then IV administer modmRNA-LNP, 0.

View Article and Find Full Text PDF

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity.

View Article and Find Full Text PDF

Nucleoside-modified messenger RNA (mRNA)-lipid nanoparticles (LNPs) are the basis for the first two EUA (Emergency Use Authorization) COVID-19 vaccines. The use of nucleoside-modified mRNA as a pharmacological agent opens immense opportunities for therapeutic, prophylactic and diagnostic molecular interventions. In particular, mRNA-based drugs may specifically modulate immune cells, such as T lymphocytes, for immunotherapy of oncologic, infectious and other conditions.

View Article and Find Full Text PDF

Targeted drug delivery to the endothelium has the potential to generate localized therapeutic effects at the blood-tissue interface. For some therapeutic cargoes, it is essential to maintain contact with the bloodstream to exert protective effects. The pharmacokinetics (PK) of endothelial surface-targeted affinity ligands and biotherapeutic cargo remain a largely unexplored area, despite obvious translational implications for this strategy.

View Article and Find Full Text PDF

The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream.

View Article and Find Full Text PDF

We aimed to characterize withdrawal syndrome (WS) and evaluate factors associated with its development in the prospective clinical study RU-SKI in patients with chronic myeloid leukemia with deep molecular response who discontinued tyrosine kinase inhibitor (TKI) therapy. In total, 98 adult patients with chronic myeloid leukemia chronic phase, TKI therapy ≥ 3 years, and deep molecular response (BCR-ABL ≤ 0.01%) ≥ 2 years were enrolled and observed without treatment.

View Article and Find Full Text PDF

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes.

View Article and Find Full Text PDF

Deformability of injectable nanocarriers impacts rheological behavior, drug loading, and affinity target adhesion. Here, we present atomic force microscopy (AFM) and spectroscopy measurements of nanocarrier Young's moduli, tune the moduli of deformable nanocarriers with cross-linkers, and demonstrate vascular targeting behavior that correlates with Young's modulus. Homobifunctional cross-linkers were introduced into lysozyme-dextran nanogels (NGs).

View Article and Find Full Text PDF

The endothelium is a thin monolayer of specialized cells that lines the luminal wall of blood vessels and constitutes the critical innermost portion of the physical barrier between the blood and the brain termed the blood-brain barrier (BBB). Aberrant changes in the endothelium occur in many neuropathological states, including those with high morbidity and mortality that lack targeted therapeutic interventions, such as traumatic brain injury (TBI). Utilizing ligands of surface determinants expressed on brain endothelium to target and combat injury mechanisms at damaged endothelium offers a new approach to the study of TBI and new avenues for clinical advancement.

View Article and Find Full Text PDF

Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts.

View Article and Find Full Text PDF

One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm).

View Article and Find Full Text PDF

Drug delivery by nanocarriers (NCs) has long been stymied by dominant liver uptake and limited target organ deposition, even when NCs are targeted using affinity moieties. Here we report a universal solution: red blood cell (RBC)-hitchhiking (RH), in which NCs adsorbed onto the RBCs transfer from RBCs to the first organ downstream of the intravascular injection. RH improves delivery for a wide range of NCs and even viral vectors.

View Article and Find Full Text PDF

Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets.

View Article and Find Full Text PDF

Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents.

View Article and Find Full Text PDF

Background: Treatment-free remission (TFR)-that is, stopping tyrosine kinase inhibitor (TKI) therapy without loss of response-is an emerging treatment goal in chronic myeloid leukemia (CML).

Objective: To evaluate TFR after discontinuation of second-line nilotinib therapy.

Design: Single-group, phase 2, open-label study.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: 8192

Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: helpers/my_audit_helper.php

Line Number: 8900

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8900
Function: str_replace

File: /var/www/html/application/controllers/Author.php
Line: 786
Function: formatAIDetailSummary

File: /var/www/html/application/controllers/Author.php
Line: 685
Function: pubMedSearchtoAuthorResults_array

File: /var/www/html/application/controllers/Author.php
Line: 122
Function: pubMedAuthorSearch_array

File: /var/www/html/index.php
Line: 316
Function: require_once