Publications by authors named "Shuto Osawa"

Working in the context of the Su-Schreiffer-Heeger model, the effect of topological boundaries on the structure and properties of bulk position-space wavefunctions is studied for a particle undergoing a quantum walk in a one-dimensional lattice. In particular, we consider what happens when the wavefunction reaches a boundary at which the Hamiltonian changes suddenly from one topological phase to another and construct an exact solution for the wavefunction on both sides of the boundary. The reflection and transmission coefficients at the boundary are calculated as a function of the system's hopping parameters, and it is shown that for some parameter ranges the transmission coefficient can be made very small.

View Article and Find Full Text PDF

All existing optical quantum walk approaches are based on the use of beamsplitters and multiple paths to explore the multitude of unitary transformations of quantum amplitudes in a Hilbert space. The beamsplitter is naturally a directionally biased device: the photon cannot travel in the reverse direction. This causes rapid increases in the optical hardware resources required for complex quantum walk applications, since the number of options for the walking particle grows with each step.

View Article and Find Full Text PDF