Low-energy visible light was converted into heat energy through the excitation of the localized surface plasmon resonance of gold nanospheres excited by upconverted emission based on triplet-triplet annihilation of organic molecules. This system allows easy tuning of absorption/emission wavelengths, which is difficult with conventional photothermal conversion using rare-earth elements.
View Article and Find Full Text PDFWe have succeeded in significantly enhancing fluorescence from intrinsically phosphorescent palladium octaethylporphyrin (Pd-porphyrin) that has an intersystem crossing efficiency of ∼1 by using silver nanoprisms (AgPRs). This was achieved by controlling the wavelength of the localized surface plasmon (LSP) resonance of AgPRs and the distance between the Pd-porphyrin molecules and the AgPR surfaces. In addition to enhancing phosphorescence by spectrally overlapping the phosphorescence band with the LSP resonance band, tuning the LSP wavelength to approximately 520 nm led to the appearance of a new emission band around the wavelength corresponding to the fluorescent radiation.
View Article and Find Full Text PDFWe describe efficient visible- and near-infrared (vis/NIR) light-driven photocatalytic properties of hybrids of CuO and plasmonic Cu arrays. The CuO/Cu arrays were prepared simply by allowing a Cu half-shell array to stand in an oxygen atmosphere for 3 h, which was prepared by depositing Cu on two-dimensional colloidal crystals with a diameter of 543 or 224 nm. The localized surface plasmon resonances (LSPRs) of the arrays were strongly excited at 866 and 626 nm, respectively, at which the imaginary part of the dielectric function of Cu is small.
View Article and Find Full Text PDF