Publications by authors named "Shuting Shen"

Article Synopsis
  • Current percutaneous transthoracic needle biopsy (PTNB) systems face challenges, prompting the development of a new registration-free navigation system aimed at improving accuracy and efficiency in CT-guided procedures.
  • A study with 98 participants showed this new system achieved an impressive primary biopsy success rate of 98.98% with significantly fewer CT scans and a short procedure time of about 18 minutes.
  • While the system is deemed effective and safe, it did record few adverse events, primarily hemorrhage and pneumothorax, highlighting the importance of monitoring during clinical use.*
View Article and Find Full Text PDF

The presence of non-reactive phosphorus (NRP) in environmental waters presents a potential risk of eutrophication and poses challenges for the removal of all phosphorus (P) fractions. This study presents the first investigation on the removal performance and mechanism of three model NRP compounds, sodium tripolyphosphate (STPP), adenosine 5'-monophosphate (AMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), in the sediment microbial fuel cell-floating treatment wetland (SMFC-FTW). Coupling SMFC with plants proved to be effective at removing NRP via electrochemical oxidation and plant uptake, particularly the challenging-to-degrade phosphonates that contain C-P bonds.

View Article and Find Full Text PDF

The COVID-19 pandemic influenced emotional experiences globally. We examined daily positive and negative affect between May/June 2020 and February 2021 (N = 151,049; 3,509,982 observations) using a convenience sample from a national mobile application-based survey that asked for daily affect reports. Four questions were examined: (1) How did people in the United States feel from May/June 2020 to February 2021?; (2) What demographic variables are related to positive and negative affect?; (3) What is the relationship between experienced stressors and daily affect?; and (4) What is the relationship between daily affect and preventive behavior? Positive affect increased, and negative decreased over time.

View Article and Find Full Text PDF

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes, covering hundreds of thousands of clinical concepts available for research and clinical care. The complex, massive, heterogeneous, and noisy nature of EHR data imposes significant challenges for feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient ggregated narative odified ealth (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

SARS-CoV-2 vaccines are useful tools to combat the Coronavirus Disease 2019 (COVID-19) pandemic, but vaccine reluctance threatens these vaccines' effectiveness. To address COVID-19 vaccine reluctance and ensure equitable distribution, understanding the extent of and factors associated with vaccine acceptance and uptake is critical. We report the results of a large nationwide study in the US conducted December 2020-May 2021 of 36,711 users from COVID-19-focused smartphone-based app How We Feel on their willingness to receive a COVID-19 vaccine.

View Article and Find Full Text PDF

Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization.

View Article and Find Full Text PDF

A pilot-scale anaerobic-anoxic/nitrifying/induced crystallization (AN-IC) process was established for phosphorus (P) recovery and nutrient removal from municipal wastewater with a treatment capacity of 80 md. Results show that the AN-IC process can operate stably on a pilot scale; the recovery efficiency of influent P reached 62.2%, and the total P removal efficiency of the IC section was 65.

View Article and Find Full Text PDF

With growing interest in resource recovery and/or reuse, waste materials have been considered a promising alternative for phosphorus (P) adsorption because they are low-cost and easily accessible. Crushed autoclaved aerated concrete (CAAC), as representative construction waste, has been extensively studied for P removal in ecological technologies such as treatment wetlands. However, most of the previous studies focused on the adsorption of orthophosphate, namely reactive phosphorus, and lacked attention to non-reactive phosphorus (NRP) which is widely present in sewage.

View Article and Find Full Text PDF

The oncogenic fusion protein BCR-ABL is the driving force of leukemogenesis in chronic myeloid leukemia (CML). Despite the great advance in CML treatment through the application of tyrosine kinase inhibitors (TKIs) against BCR-ABL, disease recurrence after TKI discontinuation and clinical resistance mainly due to BCR-ABL mutations continue to be an issue. Herein we report our efforts to synthesize a novel series of CRBN-recruiting proteolysis-targeting chimeras (PROTACs) targeting BCR-ABL based on the allosteric inhibitor asciminib.

View Article and Find Full Text PDF

Metal-dielectric heterostructures have shown great application potentials in physics, chemistry and material science. In this work, we have designed and manufactured ordered metal-dielectric multiple heterostructures with tunable optical properties, which can be as large as the order of square centimeters in size. We experimentally realized that the surface-enhanced Raman scattering signal of the periodic multiple heterostructures increased 50 times compared with the silicon nanodisk-gold film arrays, which is attributed to the large-scale hotspots and high efficient coupling between the optical cavities and surface plasmon resonance modes.

View Article and Find Full Text PDF

The illustration of the correlation between lipid droplets (LDs) variation and nonalcoholic fatty liver disease (NAFLD) is a challenging and important work in biomedical research. Herein, a red emission fluorophore LD-HW containing donor-π-bridge-acceptor (D-π-A) structure was readily constructed and systematically investigated. It was found that LD-HW could selectively identify polarity variation accompanying with an obvious blue-shift (around 80 nm) in fluorescence spectra, and a sharp enhancement (about 440-fold) in fluorescence quantum yield (QY) over the solvent polarity ranging from water (polarity parameter Δf = 0.

View Article and Find Full Text PDF

Single-molecule imaging is a powerful method for unveiling precise molecular mechanisms. Particularly, single-molecule analysis with total internal reflection fluorescence (TIRF ) microscopy has been successfully applied to the characterization of molecular mechanisms in ncRNA studies. Tracing interactions at the single-molecule level have elucidated the intermediate states of the reaction, which are hidden by ensemble averaging in combinational biochemical approaches, and clarified the key steps of the interaction.

View Article and Find Full Text PDF

Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it.

View Article and Find Full Text PDF

Recovery of phosphorus from sewage can help establish a new phosphorus cycle and hydroxyapatite (HAP) crystallization is a promising way. HAP crystallization is an amorphous calcium phosphate (ACP) mediated process, and its induction time reflects the rate of HAP nucleation, and seriously affects the efficiency of phosphorus recovery. In this study, the effects of different types of dissolved organic matter (DOM) on the induction time and phosphorus recovery performance of ACP-mediated HAP phosphorus recovery were studied, and the mechanism was analyzed by X-Ray Diffraction, Fourier transform infrared spectroscopy, and scanning electron micrograph with energy dispersive spectrometry.

View Article and Find Full Text PDF

Excess phosphorus (P) in surface runoff has significant deleterious impacts on water quality through eutrophication. Commonly, P is transported via non-point pollution and the proportion of easily plant-available reactive P (RP) among other P forms may vary significantly. Non-reactive P (NRP) can potentially contribute to the eutrophication of waterbodies, however the cleavage into bio-available P forms and eventually their biological uptake remains uncertain.

View Article and Find Full Text PDF

Most water bodies around the world suffer from pollution to varying degrees. Floating treatment wetlands (FTWs) are a simple and efficient ecological treatment technology and have been widely studied and applied as a sustainable solution for different source waters. Based on the analysis of abundant literature in the last ten years, this paper systematically reviews the history and the latest development of FTWs.

View Article and Find Full Text PDF

SARS-CoV-2 vaccines are powerful tools to combat the COVID-19 pandemic, but vaccine hesitancy threatens these vaccines’ effectiveness. To address COVID-19 vaccine hesitancy and ensure equitable distribution, understanding the extent of and factors associated with vaccine acceptance and uptake is critical. We report the results of a large nationwide study conducted December 2020-May 2021 of 34,470 users from COVID-19-focused smartphone-based app How We Feel on their willingness to receive a COVID-19 vaccine.

View Article and Find Full Text PDF

Rural domestic wastewater (RDW), one of the non-point pollution sources, has become a significant object related to sanitation improvement and water pollution control in Taihu Lake Basin, China. Current research on RDW characteristics and management with source separation is limited. In this study, a source-separated investigation into the characteristics of RDW was conducted, and the management suggestions were proposed.

View Article and Find Full Text PDF

The depletion of phosphorus resources and the excess discharge of phosphorus into waste streams are contrasting problems. The key to solving both problems is to recover phosphorus from the waste streams. Current phosphorus recovery technologies require high phosphorus concentrations and lack the ability to separate toxic substances from recovered phosphorus products.

View Article and Find Full Text PDF

Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed.

View Article and Find Full Text PDF

We present a detailed study of a three-mode-coupling cavity optomechanical system where one mechanical mode and two optical whispering-gallery modes are coupled together. We extend the earlier investigation of regular optomechanically induced transparency (OMIT) [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.

View Article and Find Full Text PDF

Two prediction models for tumor prediction based on logistic regression and BP neural network were proposed in this paper; a sensitivity analysis of risk factors was also conducted. The two protocols will be implemented in the R language and demonstrated with relevant lung cancer data. Additionally, the two models are compared, verifying their accuracy and feasibility.

View Article and Find Full Text PDF

Background: There are two major classes of cardiac tissue models: the ionic model and the FitzHugh-Nagumo model. During computer simulation, each model entails solving a system of complex ordinary differential equations and a partial differential equation with non-flux boundary conditions. The reproducing kernel method possesses significant applications in solving partial differential equations.

View Article and Find Full Text PDF

A method is presented in this paper for medical image enhancement based on II curvelet. After the wavelet decomposition of medical image, we continue to break down the high-frequency sub-images, in order to get more detailed information. We have also designed the corresponding gain weight function for the edge enhancement of low-frequency sub-images, using II curvelet to extract the edge information, which has advantages over the normal curvelet transform.

View Article and Find Full Text PDF

Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M=Ni(II)(2);Zn(II)(3)), (DCA=demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center.

View Article and Find Full Text PDF