Hierarchy has been identified as a principle underlying the organization of human brain networks. However, it remains unclear how the network hierarchy is disrupted in Parkinson's disease (PD) motor symptoms and, how it is modulated by the underlying genetic architecture. The aim of this study was to explore alterations in the motor functional hierarchical organization of the cerebrum and their underlying genetic mechanism.
View Article and Find Full Text PDFObjective: Our objective was to explore the patterns of resting-state network (RSN) connectivity alterations and investigate how the influences of individual-level network connections on cognition varied across clinical stages without assuming a constant relationship.
Methods: 108 PD patients with continuum of cognitive decline (PD-NC = 46, PD-MCI = 43, PDD = 19) and 34 healthy controls (HCs) underwent resting-state functional MRI and neuropsychological tests. Independent component analysis (ICA) and graph theory analyses (GTA) were employed to explore RSN connection changes.
Background: Although brain glymphatic dysfunction is a contributing factor to the cognitive deficits in Parkinson's disease (PD), its role in the longitudinal progression of cognitive dysfunction remains unknown.
Objective: To investigate the glymphatic function in PD with mild cognitive impairment (MCI) that progresses to dementia (PDD) and to determine its predictive value in identifying individuals at high risk for developing dementia.
Methods: We included 64 patients with PD meeting criteria for MCI and categorized them as either progressed to PDD (converters) (n = 29) or did not progress to PDD (nonconverters) (n = 35), depending on whether they developed dementia during follow-up.
Rationale And Objectives: Although both Multiple system atrophy (MSA) and Parkinson's disease (PD) belong to alpha-synucleinopathy, they have divergent clinical courses and prognoses. The degeneration of white matter has a considerable impact on cognitive performance, yet it is uncertain how PD and MSA affect its functioning in a similar or different manner.
Methods: In this study, a total of 116 individuals (37 PD with mild cognitive impairment (PD-MCI), 37 MSA (parkinsonian variant) with mild cognitive impairment (MSA-MCI), and 42 healthy controls) underwent diffusion tensor imaging (DTI) and cognitive assessment.
Objectives: This study aims to investigate the potential of radiomics with multiple parameters from conventional T1 weighted imaging (T1WI) and susceptibility weighted imaging (SWI) in distinguishing between idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA).
Methods: A total of 201 participants, including 57 patients with PD, 74 with MSA, and 70 healthy control (HCs) individuals, underwent T1WI and SWI scans. From the 12 subcortical nuclei (e.
Rationale And Objectives: This study aimed to investigate the structural and functional alterations occurring within bilateral premotor thalamus (mPMtha) in motor subtypes of Parkinson's disease (PD).
Materials And Methods: Sixty-one individuals with instability and gait difficulty (PIGD) subtype, 60 individuals with tremor-dominant (TD) subtype and 66 healthy controls (HCs) participated in the study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) and 3D T1-weighted (3DT1) scans.
End-Stage Renal Disease (ESRD) is known to be associated with a range of brain injuries, including cognitive decline. The purpose of this study is to investigate the functional connectivity (FC) of the resting-state networks (RSNs) through resting state functional magnetic resonance imaging (MRI), in order to gain insight into the neuropathological mechanism of ESRD. A total of 48 ESRD patients and 49 healthy controls underwent resting-state functional MRI and neuropsychological tests, for which Independent Components Analysis and graph-theory (GT) analysis were utilized.
View Article and Find Full Text PDF