Publications by authors named "Shushil Kumar Rai"

D-tagatose is a valuable rare sugar with potential health benefits such as antiobesity, low-calorie, prebiotic, and anticancer. However, its production is mainly depending on chemical or enzymatic catalysis. Herein, a cobalt-based metal-organic framework (MOF) was developed at room temperature in an aqueous system using a self-assembly method.

View Article and Find Full Text PDF

Aim of present study was to develop biological catalysts of L-arabinose isomerase (L-AI) by immobilizing on four different supports such as multiwalled carbon nanotube (MWCNT), graphene oxide (GOx), Santa Barbara Amorphous (SBA-15) and mobile composite matter (MCM-41). Also, comparative analysis of the developed catalysts was performed to evolve the best in terms of transformation efficiency for D-tagatose production. The developed nano-enzyme conjugates (NECs) were characterized using the high resolution transmission electron microscopy (HR-TEM) and elemental analysis was performed by energy dispersive X-ray spectroscopy (EDS).

View Article and Find Full Text PDF

The biocatalysts are broadly explored in the biological transformation processes. The enzyme cascade catalysis involves various catalytic activities in a sequential process to produce the desired product including the formation of reaction intermediates. Enzyme immobilization is a method in which enzymes are confined within a support or matrix either physically or chemically to enhance their relative stability and catalytic activity in the enzyme cascade catalysis.

View Article and Find Full Text PDF

A dual-enzyme metal-organic hybrid crystal was constructed through self-assembling of manganese phosphate embedded with β-galactosidase and L-arabinose isomerase for facile synthesis of rare sugar D-tagatose. The synthesized crystal-like hierarchical system (MnHC@β-Gal+L-AI) was extensively characterized for structural features and catalytic reactions. The results indicated that upon immobilization onto the hybrid crystal, the activity of β-galactosidase and L-arabinose iomerase was enhanced by a factor of 1.

View Article and Find Full Text PDF

Environmental benign catalytic process was developed for the valorisation of sugarcane bagasse into functional nanomaterials. Bagasse saccharification was carried out with an acid catalyst (HSO 0.5%, wt/wt) to separate sugars after pre-treatment of biomass with ethanol.

View Article and Find Full Text PDF

Most of the chemical and biochemical processes used for the de-polymerization of structural polymers of lignocellulosic biomass are environment unfriendly and costly. Here an efficient process based on xylanase, produced by Acinetobacter pittii MASK25 (MTCC 25132), hydrolysis of only physically treated rice straw and corn cob has been developed for the production of xylooligosaccharides. Bacterial strain isolated from soil was found to produce maximum xylanase at 30°C and pH 7.

View Article and Find Full Text PDF