Publications by authors named "Shusheng Zuo"

A serine protease inhibitor was extracted from potato tubers. The inhibitor was conjugated to soluble, prefractionated dextran and titanium dioxide and zinc oxide nanoparticles. Conjugation to dextran was achieved by periodate oxidation of the dextran, followed by Schiff base coupling to inhibitor amino groups, and finally reduction, whereas the conjugation to the oxide particles was carried out by aminosilanization and carbonyldiimidazole activation.

View Article and Find Full Text PDF

The interaction between pancreatic proteases and a serine protease inhibitor purified from potato tubers was investigated by chromatography-coupled light scattering measurements. The molar mass distribution in the chromatogram was compared to theoretical values calculated for the different possible combinations of complexes and free components by three different approaches, namely section analyses of the chromatograms, full mass average determination and mass distribution analysis. This revealed that the inhibitor was able to bind trypsin in a 2:1 complex, whereas the data for chymotrypsin clearly showed a limitation to 1:1 complex regardless of the molar ratio in the injected samples.

View Article and Find Full Text PDF

Stable nanosized bilayer disks were prepared from either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, or lipid mixtures with a composition reflecting that of the porcine brush border membrane. Two different polyethylene glycol (PEG)-grafted lipids, the negatively charged 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-5000] (DSPE-PEG(5000)) and the neutral N-palmitoyl-sphingosine-1-[succinyl (methoxy (polyethylene glycol) 5000] (Ceramide-PEG(5000)), were used to stabilize the disks. The disks were employed as model membranes in drug partition studies based on a fast chromatography method.

View Article and Find Full Text PDF

We stripped human red blood cell membranes of cytoskeleton proteins at pH 12 without reductant, partially solubilized the obtained vesicles by use of octaethylene glycol n-dodecyl ether and purified the glucose transporter GLUT1 by anion-exchange chromatography followed by sulfhydryl-affinity chromatography, which removed most of the nucleoside transporter (NT) and the lipids. Eighty percent of the sulfhydryl-bound GLUT1 could be eluted with sodium dodecyl sulfate (SDS) indicating that the bound protein was multimeric. Matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-ToF-MS) of the trypsinized major SDS-PAGE zone of the purified material identified GLUT1 but no other membrane protein.

View Article and Find Full Text PDF

Analyses of specific interactions between solutes and a membrane protein can serve to characterize the protein. Frontal affinity chromatography of an interactant on a column containing the membrane protein immobilized in a lipid environment is a simple and robust approach for series of experiments with particular protein molecules. Regression analysis of the retention volumes at a series of interactant concentrations shows the affinity of the protein for the interactant and the amount of active binding sites.

View Article and Find Full Text PDF