Urban areas are characterized by the presence of various pollution sources including landfills. During the recent decade, urban landfills were investigated as a source of pollution by potentially toxic elements and potential deposits for landfill mining. The contents of Cr, V, Ti, Ca, K, Mo, Zr, Sr, Rb, As, Zn, Cu, Co, Fe, Mn, Pb, Ba in soils of Vanadzor city landfill site (VL) were determined using the X-ray fluorescence spectrometer to assess multi-element pollution and ecological risk and to identify potentially toxic elements geochemical associations through the application of compositional data analysis.
View Article and Find Full Text PDFPTE contamination of soils remains one of the global environmental concerns. The ways of detecting and monitoring PTE concentrations in soils varies including traditional field sampling accompanied by sample preparation and chemical analysis and state of the art visible and near-infrared (Vis-NIR) spectroscopic approaches. Among the different Machine Learning (ML) to extract soil information from spectra and to explore the relationship between spectral reflectance data and soil PTE content PLSR method is a well-established one to construct a soil PTE estimation model.
View Article and Find Full Text PDFHoney is a highly nutritious natural product widely produced and consumed by people in Shirak and Syunik regions of Armenia. Unlike Shirak, Syunik is under the impact of mining industry. Since the environmental pollution can adversely impact the safety of honey and entail a probable risk to human health, it is important to evaluate the presence of potentially toxic trace elements in honey samples from both regions and draw comparisons.
View Article and Find Full Text PDFSoils samples collected during different geochemical surveys of the city of Kajaran located near the biggest Cu-Mo mining area in Armenia were subjected to the multivariate geostatistical analysis and geochemical mapping in order to reveal soil heavy metals spatial distribution pattern and assess human health risk level under continuous impact of mining activities. In addition, human health risk assessment was done for the contents of Pb, Cu, Zn, Co, Mo, Mn, Ti, and Fe. The results of Principal Component Analysis and Cluster Analysis verify each other and were also complemented by the spatial distribution features of studied heavy metals indicating that two groups of elements have been generated.
View Article and Find Full Text PDF