The world's phosphorus (P) resources are gradually depleting. Sewage sludge is an important secondary P resource, and sludge-derived biochar for land use is an effective way to achieve P recovery. However, P in biochar synthesized by direct pyrolysis of sludge usually shows comparatively low bioavailability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Biomaterial-based solar-driven evaporation has great potential for wastewater treatment and seawater desalination with a high energy conversion and utilization efficiency. However, technology gaps still exist for effectively and directly applying multiscale structures and intrinsic water transport channels of natural materials to enhance high-efficiency photothermal evaporation. In this study, a high-performance biomass-derived photothermal evaporative material was obtained using , a common aquatic floating plant, together with simple poly(-phenylenediamine) oxidation modification, building a hybrid biomass evaporator.
View Article and Find Full Text PDFFlexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges.
View Article and Find Full Text PDFPassive aeration has been proven to be efficient for oxygen supply in landfill. The combination of passive aeration and semi-aerobic landfill offers a cost-effective and energy-efficient approach to solid waste (SW) treatment. However, determining the optimal strategy for this combination has remained unclear.
View Article and Find Full Text PDFMature landfill leachate is a refractory organic wastewater, and needs physical and chemical pretreatments contemporaneously, e.g. iron-carbon micro-electrolysis (IC-ME).
View Article and Find Full Text PDFElectrogenic biofilms in microbial electrochemical systems have played significant roles in simultaneous wastewater treatment and energy recovery owing to their unique extracellular electron transfer. Their formation has been shown to be regulated by electrical and chemical communication, but the interaction between these signal communication pathways has not been studied. This research investigated the coordination between intracellular c-di-GMP signaling and reinforced quorum sensing with or without exogenous HSL (a common quorum sensing molecule), on the formation of mixed-cultured electrogenic biofilm under electrical signaling disruption by tetraethylammonium (TEA, a broad-range potassium channel blocker).
View Article and Find Full Text PDFA sustainable strategy for P recovery from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization was proposed, and a high value-added product of vivianite was recovered. Effects of the type and dose of alkali activator on P transformation during sludge pyrolysis were investigated. 50 wt% dose of KHCO was determined as the alkali-activated pyrolysis condition.
View Article and Find Full Text PDFVentilation is an efficient approach employed for accelerating stabilization and reducing aftercare of landfill, but its effect on leachate reduction is still elusive. To fill this knowledge gap, five lab-scale landfill reactors with different ventilation rates were established in this study. Suitable ventilation (e.
View Article and Find Full Text PDFConventional polyamide (PA) nanofiltration (NF) membranes can readily adsorb aromatic compounds, such as endocrine disrupting compounds (EDCs). Therefore, these substances can easily be transported across the membrane by solution-diffusion, resulting in a poor EDC-rejection. In this work, a novel thin film nanocomposite (TFN) membrane was fabricated by incorporating covalent organic frameworks (COFs) into the PA layer via an interfacial polymerization reaction.
View Article and Find Full Text PDFWith the advent of increasingly loose nanofiltration membranes for dye desalination, synthesis methods based on interfacial polymerization and bio-inspired materials such as polydopamine (pDA) have been investigated. However, the long polymerization time of pDA greatly limits the synthesis and application of fast dye/salt separation membranes. In this work, prebiotic chemistry-inspired aminomalononitrile (AMN) was used as a binder to co-deposit the Mannich reaction of tetrakis(hydroxymethyl)phosphonium chloride (THPC) and polyethyleneimine (PEI) to form the positively charged selective layer rapidly.
View Article and Find Full Text PDFHere the role of microplastic size on dissolved organic matter, leaching compounds and microbial community during anaerobic sludge digestion was evaluated. Compared to that without the addition of polyvinyl chloride (PVC), during the 30 days' incubation, the anaerobic sludge digestion by adding PVC at the size of 75 μm and the concentration of 2.4 g/g volatile solids (VS) showed a 8.
View Article and Find Full Text PDFA novel mechanochemically assisted persulfate activation method was proposed in this study to enhance the leaching of valuable metals from lithium-ion batteries by combining ball-milling, advanced oxidation processes and sucrose reduction. By optimizing leaching parameters including temperature, pH, milling time and solid-to-liquid ratio, high leaching efficiencies of 97.1%, 94.
View Article and Find Full Text PDFLow concentrations of antibiotics can regulate the formation of electroactive biofilms, however, the underlying mechanisms, especially the composition and spatial distribution of extracellular polymeric substances (EPS) and their effects on extracellular electron transfer (EET) process, have not been fully deciphered. Here, the response of EPS of Geobacter sulfurreducens biofilm to low concentrations of tetracycline (μg L to mg L) was explored, and the impact of such EPS variations on EET efficiency was further elucidated by transcriptomic analysis. Results showed that 0.
View Article and Find Full Text PDFHeavy metal ions in drinking water severely threaten public health in various places worldwide. Nanofiltration (NF) membrane technology is an attractive option for heavy metal ions removal; however, improving NF membrane filtration performance is required to make their industrial application viable. In this study, a positively charged THPC/PEI-TMC NF membrane was designed via simple one-step incorporation of Tetrakis (hydroxymethyl) phosphonium chloride (THPC) biocide on the surface of PEI-TMC membranes, significantly optimizing surface morphology, roughness, hydrophilicity, and zeta potential of PEI-TMC membranes.
View Article and Find Full Text PDFBiological wastewater treatment generates a large quantity of sewage sludge that requires proper treatments. In this study, the biochar pyrolyzed by sludge conditioned with Fenton's reagent and lime (referred to as Fenton-lime system) was first used as an efficient silicon fertilizer for rice cultivation. When the pyrolysis temperature was 750 °C, the dissolved silicon and available silicon contents in biochar derived from sludge conditioned with Fenton-lime system were much higher than those in raw sludge derived biochar without conditioning (3.
View Article and Find Full Text PDFMicroplastic accumulation in agricultural soils can stress plants and affects quality of the products. Current research on the effects of microplastics on plants is not consistent and the underlying mechanisms are yet unknown. Here, the molecular mechanisms of the stress response were investigated via metabolomic and transcriptomic analyses of rice Oryza sativa L.
View Article and Find Full Text PDFHigh-performance positively-charged nanofiltration (NF) membranes have a profound significance for water softening. In this work, a novel monomer, tris(3-aminopropyl)amine (TAEA), with one tertiary amine group and three primary amine groups, was blended with trace amounts of piperazine (PIP) in aqueous solution to fabricate a positively-charged NF membrane with tunable performance. As the molecular structures of TAEA and PIP are totally different, the chemical composition and structure of the polyamine selective layer could be tailored via varying the PIP content.
View Article and Find Full Text PDFCovalent organic frameworks (COFs), which are constructed from organic linkers, are a new class of crystalline porous materials comprising periodically extended and covalently bound network structures. The intrinsic structures and the tailorable organic linkers endow COFs with a low density, large surface area, tunable pore size and structure, and facilely-tailored functionality, attracting increasing interests in different fields including membrane separations. Exciting research activities ranging from fabrication strategies to separation applications of COF-based membranes have appeared.
View Article and Find Full Text PDFThe stability of superhydrophobicity is crucial for the long-term application of an oil/water separation membrane in harsh environments such as high temperatures and various aggressive solvents. However, achieving such a stable superhydrophobic membrane remains a challenge. In this study, high performance fibrous oil/water separation membranes with a highly stable superhydrophobicity were fabricated by designing a functional polymer containing hydroxyl units.
View Article and Find Full Text PDFMussel-inspired polydopamine (PDA) coatings have received widespread concern due to the advantages of eco-friendliness, adhesion nature, and film-forming feasibility. However, self-polymerization of dopamine assisted by air-oxidation under alkaline condition is time-consuming, and the ensuing uneven PDA coatings restrict their applications. In this study, we proposed a rapid PDA deposition triggered by a facile system of iron (III) chloride/hydrogen peroxide (FeCl/HO) under acidic condition.
View Article and Find Full Text PDFGraphene-based nanocomposites have a vast potential for wide-ranging antibacterial applications due to the inherently strong biocidal activity and versatile compatibility of such nanocomposites. Therefore, graphene-based functional nanomaterials can introduce enhanced antibiofouling and antimicrobial properties to polymeric membrane surfaces. In this study, reduced graphene oxide-copper (rGOC) nanocomposites were synthesized as newly robust biocides via in situ reduction.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are studied for the design of advanced nanocomposite membranes, primarily due to their ultrahigh surface area, regular and highly tunable pore structures, and favorable polymer affinity. However, the development of engineered MOF-based membranes for water treatment lags behind. Here, thin-film nanocomposite (TFN) membranes containing poly(sodium 4-styrenesulfonate) (PSS) modified ZIF-8 (mZIF) in a polyamide (PA) layer were constructed via a facile interfacial polymerization (IP) method.
View Article and Find Full Text PDF