Publications by authors named "Shusaku Uchida"

Fear extinction leads to a decrease of originally acquired fear responses after the threat is no longer present. Fear extinction is adaptive and critical for organism's survival, but deficits in extinction may lead to exaggerated fear in animals or post-traumatic stress disorder (PTSD) in humans. Dopamine has recently emerged as essential for fear extinction and PTSD, however the neural circuits serving this dopamine function are only beginning to be investigated, and the dopamine intracellular signaling pathways are unknown.

View Article and Find Full Text PDF

Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABA receptors and subsequently enhances GABA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic stress significantly contributes to psychiatric disorders like depression, but how it impacts individual behaviors is not fully understood.
  • This study categorized stressed male mice into four behavioral subtypes based on social interaction deficits and anhedonia, key symptoms associated with depression.
  • It found that the mPFC to aPVT neural pathway influences specific behavioral responses and identified a molecular mechanism involving KDM5C that affects social behavior and pleasure response.
View Article and Find Full Text PDF
Article Synopsis
  • - Histone deacetylase 1 and 2 (HDAC1/2) inhibitors could be valuable for understanding their roles in biology and treating cancer and neurodegenerative diseases.
  • - A specific HDAC1/2-selective inhibitor was identified through click chemistry, which operates via a slow-binding mechanism, enhancing histone acetylation and inhibiting breast cancer cell growth.
  • - This inhibitor also promoted neurite outgrowth in brain cells and increased neuron dendrite density in mice, making it a promising candidate for therapy due to its unique binding characteristics.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic stress is linked to a higher risk of mood and anxiety disorders, yet the exact mechanisms behind individual differences in stress responses are not well understood.*
  • A study using animal models and clinical depression patients found that problems with the Fos transcription network in the anterior cingulate cortex (ACC) lead to reduced social interactions when stressed.*
  • Targeting calcium and cyclic AMP pathways in the ACC could regulate Fos expression and help address stress-induced behavioral changes, suggesting potential new treatments for stress-related psychiatric disorders.*
View Article and Find Full Text PDF

Background: A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. Because treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies.

Methods: We used the large variance in behavioral responses to long-term treatment with multiple classes of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test.

View Article and Find Full Text PDF

Only 50% of patients with depression respond to the first antidepressant drug administered. Thus, biomarkers for prediction of antidepressant responses are needed, as predicting which patients will not respond to antidepressants can optimize selection of alternative therapies. We aimed to identify biomarkers that could predict antidepressant responsiveness using a novel data-driven approach based on statistical pattern recognition.

View Article and Find Full Text PDF

Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent.

View Article and Find Full Text PDF

Postpartum depression is an important mental health issue not only for the mother but also for the child's development, other family members, and the society. An appropriate animal model is desired to elucidate the pathogenesis of postpartum depression. However, methods for stress loading during pregnancy have not been established.

View Article and Find Full Text PDF

Cryopreservation of whole blood is useful for DNA collection, and clinical and basic research. Blood samples in ethylenediaminetetraacetic acid disodium salt (EDTA) tubes stored at - 80 °C are suitable for DNA extraction, but not for high-quality RNA extraction. Herein, a new methodology for high-quality RNA extraction from human blood samples is described.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms.

View Article and Find Full Text PDF

Although stressful events predispose individuals to psychiatric disorders, such as depression, not all people who undergo a stressful life experience become depressed, suggesting that gene-environment interactions (GxE) determine depression risk. The ventral hippocampus (vHPC) plays key roles in motivation, sociability, anhedonia, despair-like behaviors, anxiety, sleep, and feeding, pointing to the involvement of this brain region in depression. However, the molecular mechanisms underlying the cross talk between the vHPC and GxE in shaping behavioral susceptibility and resilience to chronic stress remain elusive.

View Article and Find Full Text PDF

The heterogeneity of major depressive disorder (MDD) is attributed to the fact that diagnostic criteria (e.g., DSM-5) are only based on clinical symptoms.

View Article and Find Full Text PDF

The prevalence of depression in later life is higher in women than in men. However, the sex difference in the pathophysiology of depression in elderly patients is not fully understood. Here, we performed gene expression profiling in leukocytes of middle-aged and elderly patients with major depressive disorder, termed later-life depression (LLD) in this context, and we characterized the sex-dependent pathophysiology of LLD.

View Article and Find Full Text PDF

Although major depressive disorder (MDD) is a leading cause of disability worldwide, its pathophysiology is poorly understood. Increasing evidence suggests that aberrant regulation of transcription plays a key role in the pathophysiology of MDD. Recently, long noncoding RNAs (lncRNAs) have been recognized for their important functions in chromatin structure, gene expression, and the subsequent manifestation of various biological processes in the central nervous system.

View Article and Find Full Text PDF

Recent evidence demonstrates that epigenetic regulation of gene transcription is critically involved in learning and memory. Here, we discuss the role of histone acetylation and DNA methylation, which are two best understood epigenetic processes in memory processes. More specifically, we focus on learning-strength-dependent changes in chromatin on the fibroblast growth factor 1 (Fgf1) gene and on the molecular events that modulate regulation of Fgf1 transcription, required for memory enhancement, with the specific focus on CREB-regulated transcription coactivator 1 (CRTC1).

View Article and Find Full Text PDF

Major depressive disorder is one of the most common mental illnesses as it affects more than 350 million people globally. Major depressive disorder is etiologically complex and disabling. Genetic factors play a role in the etiology of major depression.

View Article and Find Full Text PDF

Background: Glycosylation is a common posttranslational modification in protein biosynthesis that is implicated in several disease states. It has been reported that specific protein glycan structures are useful as biomarkers for cancer and some neuropsychiatric diseases; however, the relationship between plasma protein glycosylation and major depressive disorder (MDD) has not been investigated to date. The aim of this study was to determine whether plasma protein glycan structures are altered in depression using a stress-based mouse model and samples from patients with MDD.

View Article and Find Full Text PDF

At the neuronal cell level, long-term memory formation emerges from interactions between initial activity-dependent molecular changes at the synapse and subsequent regulation of gene transcription in the nucleus. This in turn leads to strengthening of the connections back at the synapse that received the initial signal. However, the mechanisms through which this synapse-to-nucleus molecular exchange occurs remain poorly understood.

View Article and Find Full Text PDF

The heterogeneity of depression (due to factors such as varying age of onset) may explain why biological markers of major depressive disorder (MDD) remain uncertain. We aimed to identify gene expression markers of MDD in leukocytes using microarray analysis. We analyzed gene expression profiles of patients with MDD (age ≥50, age of depression onset <50) (N = 10, depressed state; N = 13, remitted state).

View Article and Find Full Text PDF

Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner.

View Article and Find Full Text PDF

Unlabelled: Chronic stress-induced aberrant gene expression in the brain and subsequent dysfunctional neuronal plasticity have been implicated in the etiology and pathophysiology of mood disorders. In this study, we examined whether altered expression of small, regulatory, noncoding microRNAs (miRNAs) contributes to the depression-like behaviors and aberrant neuronal plasticity associated with chronic stress. Mice exposed to chronic ultra-mild stress (CUMS) exhibited increased depression-like behaviors and reduced hippocampal expression of the brain-enriched miRNA-124 (miR-124).

View Article and Find Full Text PDF

Background: Although depression is the leading cause of disability worldwide, its pathophysiology is poorly understood. Recent evidence has suggested that sirtuins (SIRTs) play a key role in cognition and synaptic plasticity, yet their role in mood regulation remains controversial. Here, we aimed to investigate whether SIRT function is associated with chronic stress-elicited depression-like behaviors and neuronal atrophy.

View Article and Find Full Text PDF