A series of mesoporous silica-based catalysts with finely-tuned surface wettability have been synthesized, of which the catalysis efficiency towards aqueous hydrogenations is highly dependent on their surface wettability and can be five times higher than that of the commercial Pd/C catalyst.
View Article and Find Full Text PDFInspired by the structure features of micelle, we attempt to synthesize a novel functionalized mesoporous silica nanosphere consisting of a hydrophobic core and a hydrophilic shell. The obtained solid materials were structurally confirmed by N(2) sorption, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Their compositions were characterized by Fourier transfer infrared spectroscopy (FT-IR), solid state NMR, X-ray photoelectron spectroscopy (XPS), and elemental analysis.
View Article and Find Full Text PDFA novel solid catalyst featuring a hydrophobic core-hydrophilic shell structure was synthesized for aqueous-phase reactions, which showed significant reaction rate enhancement effects.
View Article and Find Full Text PDF