As part of the advancement in therapeutic decision-making for brain tumor patients at St. Jude Children's Research Hospital (SJCRH), we developed three robust classifiers, a deep learning neural network (NN), k-nearest neighbor (kNN), and random forest (RF), trained on a reference series DNA-methylation profiles to classify central nervous system (CNS) tumor types. The models' performance was rigorously validated against 2054 samples from two independent cohorts.
View Article and Find Full Text PDFPurpose: To evaluate the safety, activity, and emergence of FLT3-kinase domain (KD) mutations with combination therapy of crenolanib and sorafenib in acute myeloid leukemia (AML) with FLT3-internal tandem duplication (ITD).
Patients And Methods: After in vitro and xenograft efficacy studies using AML cell lines that have FLT3-ITD with or without FLT3-KD mutation, a pilot study was performed with crenolanib (67 mg/m2/dose, three times per day on days 1-28) and two dose levels of sorafenib (150 and 200 mg/m2/day on days 8-28) in 9 pediatric patients with refractory/relapsed FLT3-ITD-positive AML. Pharmacokinetic, pharmacodynamic, and FLT3-KD mutation analysis were done in both preclinical and clinical studies.
The Molecular Pathology Section, Cleveland Clinic (Cleveland, OH), has undergone enhancement of its testing portfolio and processes. An Excel 2013- and paper-based data-management system was replaced with a commercially available laboratory information-management system (LIMS) software application, a separate bioinformatics platform, customized test-interpretation applications, a dedicated sample-accessioning service, and a results-releasing software application. The customized LIMS solution manages complex workflows, large-scale data packets, and process automation.
View Article and Find Full Text PDFUnlabelled: Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole-genome sequencing (WGS), whole-exome sequencing (WES), and RNA sequencing (RNA-seq), to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically relevant (25%), and/or cancer-predisposing (18%) variants.
View Article and Find Full Text PDFCold Spring Harb Mol Case Stud
October 2019
Patients harboring germline pathogenic biallelic variants in genes involved in the recognition and repair of DNA damage are known to have a substantially increased cancer risk. Emerging evidence suggests that individuals harboring heterozygous variants in these same genes may also be at heightened, albeit lesser, risk for cancer. Herein, we sought to determine whether heterozygous variants in , the gene encoding an essential DNA helicase that is defective in children with the autosomal recessive cancer-predisposing condition Rothmund-Thomson syndrome (RTS), are associated with increased risk for childhood cancer.
View Article and Find Full Text PDFPurpose: To determine the pharmacokinetics and skin toxicity profile of sorafenib in children with refractory/relapsed malignancies.
Patients And Methods: Sorafenib was administered concurrently or sequentially with clofarabine and cytarabine to patients with leukemia or with bevacizumab and cyclophosphamide to patients with solid tumor malignancies. The population pharmacokinetics (PPK) of sorafenib and its metabolites and skin toxicities were evaluated.
Fms-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations, common in pediatric acute myeloid leukemia (AML), associate with early relapse and poor prognosis. Past studies have suggested additional cooperative mutations are required for leukemogenesis in FLT3-ITD+ AML. Using RNA sequencing and a next-generation targeted gene panel, we broadly characterize the co-occurring genomic alterations in pediatric cytogenetically normal (CN) FLT3-ITD+ AML to gain a deeper understanding of the clonal patterns and heterogeneity at diagnosis and relapse.
View Article and Find Full Text PDFBackground: Sequencing errors are key confounding factors for detecting low-frequency genetic variants that are important for cancer molecular diagnosis, treatment, and surveillance using deep next-generation sequencing (NGS). However, there is a lack of comprehensive understanding of errors introduced at various steps of a conventional NGS workflow, such as sample handling, library preparation, PCR enrichment, and sequencing. In this study, we use current NGS technology to systematically investigate these questions.
View Article and Find Full Text PDFSpitzoid melanoma is a specific morphologic variant of melanoma that most commonly affects children and adolescents, and ranges on the spectrum of malignancy from low grade to overtly malignant. These tumors are generally driven by fusions of ALK, RET, NTRK1/3, MET, ROS1 and BRAF. However, in approximately 50% of cases no genetic driver has been established.
View Article and Find Full Text PDFTo evaluate the potential of an integrated clinical test to detect diverse classes of somatic and germline mutations relevant to pediatric oncology, we performed three-platform whole-genome (WGS), whole exome (WES) and transcriptome (RNA-Seq) sequencing of tumors and normal tissue from 78 pediatric cancer patients in a CLIA-certified, CAP-accredited laboratory. Our analysis pipeline achieves high accuracy by cross-validating variants between sequencing types, thereby removing the need for confirmatory testing, and facilitates comprehensive reporting in a clinically-relevant timeframe. Three-platform sequencing has a positive predictive value of 97-99, 99, and 91% for somatic SNVs, indels and structural variations, respectively, based on independent experimental verification of 15,225 variants.
View Article and Find Full Text PDFPersonalized cancer therapy targeting somatic mutations in patient tumors is increasingly being incorporated into practice. Other therapeutic vulnerabilities resulting from changes in gene expression due to tumor specific epigenetic perturbations are progressively being recognized. These genomic and epigenomic changes are ultimately manifest in the tumor proteome and phosphoproteome.
View Article and Find Full Text PDFBackground: Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring.
Methods: We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts.
Oncogenic addiction to the Fms-like tyrosine kinase 3 (FLT3) is a hallmark of acute myeloid leukemia (AML) that harbors the FLT3-internal tandem duplication (FLT3-ITD) mutation. While FLT3 inhibitors like sorafenib show initial therapeutic efficacy, resistance rapidly develops through mechanisms that are incompletely understood. Here, we used RNA-Seq-based analysis of patient leukemic cells and found that upregulation of the Tec family kinase BMX occurs during sorafenib resistance.
View Article and Find Full Text PDFGamma delta () T-cell antigen receptor (TCR) expression and its related T-cell differentiation are not commonly reported in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL). Here we report two pediatric T-ALL cases and present their clinical features, histology, immunophenotypes, cytogenetics, and molecular diagnostic findings. The first patient is a two-year-old girl with leukocytosis, circulating lymphoblasts, and a cryptic insertion of a short-arm segment at 10p12 into the long-arm segment of 11q23 resulting in an MLL and AF10 fusion transcript, which may be the first reported in T-ALL.
View Article and Find Full Text PDFBithalamic gliomas are rare cancers diagnosed based on poorly defined radiologic criteria. Infiltrative astrocytomas account for most cases. While some previous studies reported dismal outcomes for patients with bithalamic gliomas irrespective of therapy and histologic grade, others described better prognoses even without anticancer therapy.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML.
View Article and Find Full Text PDFChromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL). Here we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG is a hallmark of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion.
View Article and Find Full Text PDFLow-grade neuroepithelial tumors (LGNTs) are diverse CNS tumors presenting in children and young adults, often with a history of epilepsy. While the genetic profiles of common LGNTs, such as the pilocytic astrocytoma and 'adult-type' diffuse gliomas, are largely established, those of uncommon LGNTs remain to be defined. In this study, we have used massively parallel sequencing and various targeted molecular genetic approaches to study alterations in 91 LGNTs, mostly from children but including young adult patients.
View Article and Find Full Text PDFGliomatosis cerebri (GC), a rare and deadly CNS neoplasm characterized by involvement of at least three cerebral lobes, predominantly affects adults. While a few small series have reported its occurrence in children, little is known about the molecular characteristics of pediatric GC. We reviewed clinical, radiological, and histological features of pediatric patients with primary GC treated at our institution over 15 years.
View Article and Find Full Text PDFBackground: The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families.
Methods: In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69).
We developed Copy Number Segmentation by Regression Tree in Next Generation Sequencing (CONSERTING), an algorithm for detecting somatic copy-number alteration (CNA) using whole-genome sequencing (WGS) data. CONSERTING performs iterative analysis of segmentation on the basis of changes in read depth and the detection of localized structural variations, with high accuracy and sensitivity. Analysis of 43 cancer genomes from both pediatric and adult patients revealed novel oncogenic CNAs, complex rearrangements and subclonal CNAs missed by alternative approaches.
View Article and Find Full Text PDF