Quantum measurement is essential to both the foundations and practical applications of quantum information science. Among many possible models of quantum measurement, feedback measurements that dynamically update their physical structure are highly interesting due to their flexibility, which enables a wide range of measurements that might otherwise be hard to implement. Here we investigate by detector tomography a measurement consisting of a displacement operation combined with photon detection followed by a real time feedback operation.
View Article and Find Full Text PDFOne of the peculiar features in quantum mechanics is that a superposition of macroscopically distinct states can exist. In optical system, this is highlighted by a superposition of coherent states (SCS), i.e.
View Article and Find Full Text PDFEfficient generation and detection of indistinguishable twin photons are at the core of quantum information and communications technology (Q-ICT). These photons are conventionally generated by spontaneous parametric down conversion (SPDC), which is a probabilistic process, and hence occurs at a limited rate, which restricts wider applications of Q-ICT. To increase the rate, one had to excite SPDC by higher pump power, while it inevitably produced more unwanted multi-photon components, harmfully degrading quantum interference visibility.
View Article and Find Full Text PDFBroadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor.
View Article and Find Full Text PDF