Publications by authors named "Shurjo K Sen"

The data-intensive fields of genomics and machine learning (ML) are in an early stage of convergence. Genomics researchers increasingly seek to harness the power of ML methods to extract knowledge from their data; conversely, ML scientists recognize that genomics offers a wealth of large, complex, and well-annotated datasets that can be used as a substrate for developing biologically relevant algorithms and applications. The National Human Genome Research Institute (NHGRI) inquired with researchers working in these two fields to identify common challenges and receive recommendations to better support genomic research efforts using ML approaches.

View Article and Find Full Text PDF

Specific-pathogen-free (SPF) mice have improved hematopoietic characteristics relative to germ-free mice, however, it is not clear whether improvements in hematopoietic traits will continue when the level of microorganism exposure is further increased. We co-housed SPF C57BL/6 mice in a conventional facility (CVT) and found a significant increase in gut microbiota diversity along with increased levels of myeloid cells and T cells, especially effector memory T cells. Through single cell RNA sequencing of sorted KL (c-KitLin) cells, we imputed a decline in long-term hematopoietic stem cells and an increase in granulocyte-monocyte progenitors in CVT mice with up-regulation of genes associated with cell survival.

View Article and Find Full Text PDF

The Triggering Receptor Expressed on Myeloid cells-like 4 (TREML4) is a member of the TREM receptor family, known modulators of inflammatory responses. We have previously found that expression positively correlates with human coronary arterial calcification (CAC). However, the role of in the pathogenesis of cardiovascular disease remains incompletely defined.

View Article and Find Full Text PDF

In humans, bone marrow (BM) failure syndromes, both constitutional and acquired, predispose to myeloid malignancies. We have modeled acquired immune aplastic anemia, the paradigmatic disease of these syndromes, in the mouse by infusing lymph node cells from specific pathogen-free (SPF) CD45.1 congenic C57BL/6 (B6) donors into hybrid CByB6F1 recipients housed either in conventional (CVB) or SPF facilities.

View Article and Find Full Text PDF

Laboratory mouse studies are paramount for understanding basic biological phenomena but also have limitations. These include conflicting results caused by divergent microbiota and limited translational research value. To address both shortcomings, we transferred C57BL/6 embryos into wild mice, creating "wildlings.

View Article and Find Full Text PDF

Background: A single variant in (c.471+2T>A), the gene encoding N-acetyltransferase 10, has been associated with Lenz microphthalmia syndrome. In this study, we aimed to identify causative variants in families with syndromic X-linked microphthalmia.

View Article and Find Full Text PDF
Article Synopsis
  • Barrier tissues, like the skin, are important for immune defense and contain many immune cells called commensal-specific T cells, which respond to environmental stressors.
  • These skin-resident T cells exhibit a unique dual program that allows them to quickly switch to a tissue-repairing mode when faced with injury or inflammation.
  • However, if the immune regulation is disrupted, these T cells can also trigger harmful overreactions, highlighting their role in balancing local immunity and tissue healing.
View Article and Find Full Text PDF

Primary liver tumors and liver metastasis currently represent the leading cause of cancer-related death. Commensal bacteria are important regulators of antitumor immunity, and although the liver is exposed to gut bacteria, their role in antitumor surveillance of liver tumors is poorly understood. We found that altering commensal gut bacteria in mice induced a liver-selective antitumor effect, with an increase of hepatic CXCR6 natural killer T (NKT) cells and heightened interferon-γ production upon antigen stimulation.

View Article and Find Full Text PDF
Article Synopsis
  • - The research highlights how the immune system senses and responds to the microbiota on skin barrier surfaces, focusing on T cell responses that utilize non-classical MHC class I molecules.
  • - These commensal-specific T cells, which are different from pathogen-induced immune cells, play a role in promoting protection against pathogens and enhancing skin wound healing.
  • - The findings suggest that non-classical MHC class I molecules contribute to a unique form of adaptive immunity that integrates anti-microbial functions with tissue repair, showing their importance in maintaining homeostasis with the microbiota.
View Article and Find Full Text PDF

Background: One goal of personalized medicine is leveraging the emerging tools of data science to guide medical decision-making. Achieving this using disparate data sources is most daunting for polygenic traits. To this end, we employed random forests (RFs) and neural networks (NNs) for predictive modeling of coronary artery calcium (CAC), which is an intermediate endo-phenotype of coronary artery disease (CAD).

View Article and Find Full Text PDF

Pendrin (Slc26a4) is a Cl(-)/HCO3 (-) exchanger expressed in renal intercalated cells and mediates renal Cl(-) absorption. With pendrin gene ablation, blood pressure and vascular volume fall, which increases plasma renin concentration. However, serum aldosterone does not significantly increase in pendrin-null mice, suggesting that pendrin regulates adrenal zona glomerulosa aldosterone production.

View Article and Find Full Text PDF

Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data.

View Article and Find Full Text PDF

Background: Massively-parallel cDNA sequencing (RNA-Seq) is a new technique that holds great promise for cardiovascular genomics. Here, we used RNA-Seq to study the transcriptomes of matched coronary artery disease cases and controls in the ClinSeq® study, using cell lines as tissue surrogates.

Results: Lymphoblastoid cell lines (LCLs) from 16 cases and controls representing phenotypic extremes for coronary calcification were cultured and analyzed using RNA-Seq.

View Article and Find Full Text PDF

Current methods for detecting mutations in Fanconi anemia (FA)-suspected patients are inefficient and often miss mutations. We have applied recent advances in DNA sequencing and genomic capture to the diagnosis of FA. Specifically, we used custom molecular inversion probes or TruSeq-enrichment oligos to capture and sequence FA and related genes, including introns, from 27 samples from the International Fanconi Anemia Registry at The Rockefeller University.

View Article and Find Full Text PDF

Objective: To identify transcriptomic biomarkers of coronary heart disease (CHD) in 188 cases with CHD and 188 age- and sex-matched controls who were participants in the Framingham Heart Study.

Approach And Results: A total of 35 genes were differentially expressed in cases with CHD versus controls at false discovery rate<0.5, including GZMB, TMEM56, and GUK1.

View Article and Find Full Text PDF

While the importance of random sequencing errors decreases at higher DNA or RNA sequencing depths, systematic sequencing errors (SSEs) dominate at high sequencing depths and can be difficult to distinguish from biological variants. These SSEs can cause base quality scores to underestimate the probability of error at certain genomic positions, resulting in false positive variant calls, particularly in mixtures such as samples with RNA editing, tumors, circulating tumor cells, bacteria, mitochondrial heteroplasmy, or pooled DNA. Most algorithms proposed for correction of SSEs require a data set used to calculate association of SSEs with various features in the reads and sequence context.

View Article and Find Full Text PDF

Transposable elements (TE), defined as discrete pieces of DNA that can move from one site to another site in genomes, represent significant components of eukaryotic genomes, including primates. Comparative genome-wide analyses have revealed the considerable structural and functional impact of TE families on primate genomes. Insights into these questions have come in part from the development of computational methods that allow detailed and reliable identification, annotation, and evolutionary analyses of the many TE families that populate primate genomes.

View Article and Find Full Text PDF

Retrotransposons, specifically Alu and L1 elements, have been especially successful in their expansion throughout primate genomes. While most of these elements integrate through an endonuclease-mediated process termed target primed reverse transcription, a minority integrate using alternative methods. Here we present evidence for one such mechanism, which we term internal priming and demonstrate that loci integrating through this mechanism are qualitatively different from "classical" insertions.

View Article and Find Full Text PDF

Structural variants (SVs) are common in the human genome. Because approximately half of the human genome consists of repetitive, transposable DNA sequences, it is plausible that these elements play an important role in generating SVs in humans. Sequencing of the diploid genome of one individual human (HuRef) affords us the opportunity to assess, for the first time, the impact of mobile elements on SVs in an individual in a thorough and unbiased fashion.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution.

View Article and Find Full Text PDF

The Alu family is a highly successful group of non-LTR retrotransposons ubiquitously found in primate genomes. Similar to the L1 retrotransposon family, Alu elements integrate primarily through an endonuclease-dependent mechanism termed target site-primed reverse transcription (TPRT). Recent studies have suggested that, in addition to TPRT, L1 elements occasionally utilize an alternative endonuclease-independent pathway for genomic integration.

View Article and Find Full Text PDF

With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD) in the chimpanzee genome since the divergence of the chimpanzee and human lineages ( approximately 6 million y ago).

View Article and Find Full Text PDF

LINE-1 elements (L1s) are a family of highly successful retrotransposons comprising approximately 17% of the human genome, the majority of which have inserted through an endonuclease-dependent mechanism termed target-primed reverse transcription. Recent in vitro analyses suggest that in the absence of non-homologous end joining proteins, L1 elements may utilize an alternative, endonuclease-independent pathway for insertion. However, it remains unknown whether this pathway operates in vivo or in cell lines where all DNA repair mechanisms are functional.

View Article and Find Full Text PDF

Recombination between Alu elements results in genomic deletions associated with many human genetic disorders. Here, we compare the reference human and chimpanzee genomes to determine the magnitude of this recombination process in the human lineage since the human-chimpanzee divergence approximately 6 million years ago. Combining computational data mining and wet-bench experimental verification, we identified 492 human-specific deletions (for a total of approximately 400 kb) attributable to this process, a significant component of the insertion/deletion spectrum of the human genome.

View Article and Find Full Text PDF

Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of approximately 18 kb of sequence from the human genome and approximately 15 kb from the chimpanzee genome.

View Article and Find Full Text PDF