Fire can lead to transitions between forest and grassland ecosystems and trigger positive feedbacks to climate warming by releasing CO into the atmosphere. Climate change is projected to increase the prevalence and severity of wildfires. However, fire effects on the fate and impact of terrestrial organic matter (i.
View Article and Find Full Text PDFDrier and hotter conditions linked with anthropogenic climate change can increase wildfire frequency and severity, influencing terrestrial and aquatic carbon cycles at broad spatial and temporal scales. The impacts of wildfire are complex and dependent on several factors that may increase terrestrial deposition and the influx of dissolved organic matter (DOM) from plants into nearby aquatic systems, resulting in the darkening of water color. We tested the effects of plant biomass quantity and its interaction with fire (burned vs.
View Article and Find Full Text PDFDaphnia, an ecologically important zooplankton species in lakes, shows both genetic adaptation and phenotypic plasticity in response to temperature and fish predation, but little is known about the molecular basis of these responses and their potential interactions. We performed a factorial experiment exposing laboratory-propagated Daphnia pulicaria clones from two lakes in the Sierra Nevada mountains of California to normal or high temperature (15°C or 25°C) in the presence or absence of fish kairomones, then measured changes in life history and gene expression. Exposure to kairomones increased upper thermal tolerance limits for physiological activity in both clones.
View Article and Find Full Text PDFThe width of a population's resource-use niche is determined by individual diet breadth ("within-individual component") and the degree of niche partitioning between individuals ("between-individual component"). The balance between these two factors affects ecological stability and evolutionary trajectories, and may shift as ecological opportunity permits broader population niches. Lakes in California's Sierra Nevada Mountains vary in resource diversity for introduced brook trout (Salvelinus fontinalis) due to elevation, lake morphometry, and watershed features.
View Article and Find Full Text PDFHuman-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl) concentration-will affect lake food webs and if two of the lowest Cl thresholds found globally are sufficient to protect these food webs.
View Article and Find Full Text PDFIntrogressive hybridization may erode phenotypic divergence along environmental gradients, collapsing locally adapted populations into a hybrid swarm. Alternatively, introgression may promote phenotypic divergence by providing variation on which natural selection can act. In freshwater fishes, water flow often selects for divergent morphological traits in lake versus stream habitats.
View Article and Find Full Text PDFHow communities reorganize during climate change depends on the distribution of diversity within ecosystems and across landscapes. Understanding how environmental and evolutionary history constrain community resilience is critical to predicting shifts in future ecosystem function. The goal of our study was to understand how communities with different histories respond to environmental change with regard to shifts in elevation (temperature, nutrients) and introduced predators.
View Article and Find Full Text PDFIncreased global temperatures caused by climate change are causing species to shift their ranges and colonize new sites, creating novel assemblages that have historically not interacted. Species interactions play a central role in the response of ecosystems to climate change, but the role of trophic interactions in facilitating or preventing range expansions is largely unknown. The goal of our study was to understand how predators influence the ability of range-shifting prey to successfully establish in newly available habitat following climate warming.
View Article and Find Full Text PDFWarming, eutrophication (nutrient fertilization) and brownification (increased loading of allochthonous organic matter) are three global trends impacting lake ecosystems. However, the independent and synergistic effects of resource addition and warming on autotrophic and heterotrophic microorganisms are largely unknown. In this study, we investigate the independent and interactive effects of temperature, dissolved organic carbon (DOC, both allochthonous and autochthonous) and nitrogen (N) supply, in addition to the effect of spatial variables, on the composition, richness, and evenness of prokaryotic and eukaryotic microbial communities in lakes across elevation and N deposition gradients in the Sierra Nevada mountains of California, USA.
View Article and Find Full Text PDFPredator recovery often leads to ecosystem change that can trigger conflicts with more recently established human activities. In the eastern North Pacific, recovering sea otters are transforming coastal systems by reducing populations of benthic invertebrates and releasing kelp forests from grazing pressure. These changes threaten established shellfish fisheries and modify a variety of other ecosystem services.
View Article and Find Full Text PDFBiomass distribution among size classes follows a power law where the Log-abundance of taxa scales to Log-size with a slope that responds to environmental abiotic and biotic conditions. The interactions between ecological mechanisms controlling the slope of locally realized size-abundance relationships (SAR) are however not well understood. Here we tested how warming, nutrient levels, and grazing affect the slope of phytoplankton community SARs in decadal time-series from eight Swiss lakes of the peri-alpine region, which underwent environmental forcing due to climate change and oligotrophication.
View Article and Find Full Text PDFThe keystone roles of mega-fauna in many terrestrial ecosystems have been lost to defaunation. Large predators and herbivores often play keystone roles in their native ranges, and some have established invasive populations in new biogeographic regions. However, few empirical examples are available to guide expectations about how mega-fauna affect ecosystems in novel environmental and evolutionary contexts.
View Article and Find Full Text PDFGlobal change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (<30 µm and >30 µm) in the presence and absence of grazing in microcosm experiments.
View Article and Find Full Text PDFResources and temperature play major roles in determining biological production in lake ecosystems. Lakes have been warming and 'browning' over recent decades due to climate change and increased loading of terrestrial organic matter. Conflicting hypotheses and evidence have been presented about whether these changes will increase or decrease fish growth within lakes.
View Article and Find Full Text PDFConsensus has emerged in the literature that increased biodiversity enhances the capacity of ecosystems to perform multiple functions. However, most biodiversity/ecosystem function studies focus on a single ecosystem, or on landscapes of homogenous ecosystems. Here, we investigate how increased landscape-level environmental dissimilarity may affect the relationship between different metrics of diversity (α, β, or γ) and ecosystem function.
View Article and Find Full Text PDFVariation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins.
View Article and Find Full Text PDFAlgae hold much promise as a potential feedstock for biofuels and other products, but scaling up biomass production remains challenging. We hypothesized that multispecies assemblages, or polycultures, could improve crop yield when grown in media with mixed nitrogen sources, as found in wastewater. We grew mono- and poly- cultures of algae in four distinct growth media that differed in the form (i.
View Article and Find Full Text PDFThe strength of species interactions often varies geographically and locally with environmental conditions. Competitive interactions are predicted to be stronger in benign environments while facilitation is expected to be stronger in harsh ones. We tested these ideas with an aboveground neighbor removal experiment at six salt marshes along the California coast.
View Article and Find Full Text PDFInteractions among microbes determine the prevalence of harmful algal blooms that threaten water quality. These interactions can be indirectly mediated by shared resources or consumers, or through interference by the production of allelochemicals. Allelopathic interactions and resource competition have been shown to occur among algae and associated microbes.
View Article and Find Full Text PDFClimate change shuffles species ranges and creates novel interactions that may either buffer communities against climate change or exacerbate its effect. For instance, facilitation can become more prevalent in salt marshes under stressful conditions while competition is stronger in benign environments. Sea-level rise (SLR) is a consequence of climate change that affects the distribution of stress from inundation and salinity.
View Article and Find Full Text PDFModern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops.
View Article and Find Full Text PDFSea otters are a classic example of a predator controlling ecosystem productivity through cascading effects on basal, habitat-forming kelp species. However, their indirect effects on other kelp-associated taxa like fishes are poorly understood. We examined the effects of sea otter (Enhydra lutris) reintroduction along the west coast of Vancouver Island, Canada on giant kelp (Macrocystis pyrifera) distributions and the trophic niches and growth of two common kelp forest fishes, black (Sebastes melanops) and copper (S.
View Article and Find Full Text PDFAppl Environ Microbiol
April 2016
Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO2 uptake by mesocosms in early dawn.
View Article and Find Full Text PDFUnderstanding the evolutionary potential of organisms to adapt to a changing climate, and the fitness consequences of temperature fluctuations, are critical to forecasting the future of biodiversity. Geographic variation among populations in life history response to temperature mean and variability offers one view of the potential for local adaptation to broaden the thermal niche. We used laboratory growth experiments to examine the effects of temperatures between 13 degrees C and 30 degrees C on five life history traits and the intrinsic rate of increase for 15 Tigriopus californicus populations distributed over 17 degrees of latitude.
View Article and Find Full Text PDF