Publications by authors named "Shuqiong Yang"

Drought is a major abiotic stress in restricting the growth, development, and yield of maize. As a significant epigenetic regulator, small RNA also functions in connecting the transcriptional and post-transcriptional regulatory network. Further to help comprehending the molecular mechanisms underlying drought adaptability and tolerance of maize, an integrated multi-omics analysis of transcriptome, sRNAome, and degradome was performed on the seedling roots of an elite hybrid Zhengdan958 under drought stress.

View Article and Find Full Text PDF

Vetiver grass (), is a perennial and tussock C4 grass from the genus of Poaceae, which has been widely used as a natural and inexpensive resource for multifarious environmental applications. The complete mitogenome of was 551,622 bp in length, containing 40 protein-coding genes (PCGs), 19 transfer RNA genes (tRNAs), and six ribosomal RNA genes (rRNAs). All PCGs started with ATG and stopped with TNN (TAA, TAG, and TGA).

View Article and Find Full Text PDF

Cucumis hystrix Chakr. (2n = 2x = 24) is a wild species that can hybridize with cultivated cucumber (C. sativus L.

View Article and Find Full Text PDF

The southern root-knot nematode (RKN), Meloidogyne incognita (Kofoid & White) Chitwood, is one of most destructive species of plant parasitic nematodes, causing significant economic losses to numerous crops including cucumber (Cucumis sativus L. 2n = 14). No commercial cultivar is currently available with resistance to RKN, severely hindering the genetic improvement of RKN resistance in cucumber.

View Article and Find Full Text PDF

Background: Meloidogyne incognita is a devastating nematode that causes significant losses in cucumber production worldwide. Although numerous studies have emphasized on the susceptible response of plants after nematode infection, the exact regulation mechanism of M. incognita-resistance in cucumber remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Theoretical investigations of four stable carbon isomers used density functional theory and a full core hole potential method to simulate their XPS and NEXAFS spectra.
  • The NEXAFS spectra showed clear differences among the isomers, and distinct XPS spectra were found for each, allowing for identification of the stable structures.
  • The study further examined the individual spectral components and explored how they relate to the local structures of the carbon atoms in these fullerene isomers.
View Article and Find Full Text PDF

Cucumis anguria is a potential genetic resource for improving crops of the genus Cucumis, owing to its broad-spectrum resistance. However, few cytogenetic studies on C. anguria have been reported because of its small metaphase chromosomes and the scarcity of distinguished chromosomal landmarks.

View Article and Find Full Text PDF

Allopolyploidy and homoeologous recombination are two important processes in reshaping genomes and generating evolutionary novelties. Newly formed allopolyploids usually display chromosomal perturbations as a result of pairing errors at meiosis. To understand mechanisms of stabilization of allopolyploid species derived from distant chromosome bases, we investigated mitotic stability of a synthetic Cucumis allotetraploid species in relation to meiosis chromosome behavior.

View Article and Find Full Text PDF

Three subtelomeric satellites and one interstitial 5S rDNA were characterized in Cucumis hystrix, and the pericentromeric signals of two C. hystrix subtelomeric satellites along C. sativus chromosomes supported the hypothesis of chromosome fusion in Cucumis.

View Article and Find Full Text PDF

Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species.

View Article and Find Full Text PDF

Background: Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats.

View Article and Find Full Text PDF

Chromosome painting based on fluorescence in situ hybridization (FISH) has played an important role in chromosome identification and research into chromosome rearrangements, diagnosis of chromosome abnormalities and evolution in human and animal species. However, it has not been applied widely in plants due to the large amounts of dispersed repetitive sequences in chromosomes. In the present work, a chromosome painting method for single-copy gene pools in Cucumis sativus was successfully developed.

View Article and Find Full Text PDF