Publications by authors named "Shuping Lin"

Article Synopsis
  • Immobilizing free enzymes allows for easier recovery and reuse while improving their enzymatic properties, and hierarchically porous metal-organic frameworks (HP-MOFs) show potential for this purpose.
  • The study successfully created ultrastable crystalline HP-MOFs using guanosine 5'-monophosphate (GMP) as a ligand, resulting in various morphologies and enhanced stability and activity of immobilized enzymes.
  • Specifically, the immobilized Candida antarctica lipase B (CALB) demonstrated impressive performance in producing glycerides with high yields, maintaining significant activity even after multiple reuse cycles.
View Article and Find Full Text PDF

Surface micro- and nanostructures profoundly affect the functional performance of nerve regeneration implants by modulating neurite responses. However, few studies have investigated the impact of discrete nanostructures, such as nanopillars and nanoholes, and their combination with microgrooves on neurite outgrowth and alignment. Furthermore, numerous techniques have been developed for surface micro-/nanopatterning, but simple and low-cost approaches are quite limited.

View Article and Find Full Text PDF

The measurement of the neurofilament light chain (NFL) in human blood plasma/serum is a promising liquid biopsy for Alzheimer's disease (AD) diagnosis, offering advantages over conventional neuroimaging techniques recommended in clinical guidelines. Here, a controllable nano-brush structure comprising upstanding silicon nanowires coated with indium tin oxide was employed as the sensing substrate. This nano-brush structure was modified with an NFL antibody (NFLAb) via silane coupling and then further connected as the extended gate in a field-effect transistor (EGFET).

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer. Cisplatin is commonly used in the treatment of many malignant tumours including NSCLC. The innate drug sensitivity greatly affects the clinical efficacy of cisplatin-based chemotherapy.

View Article and Find Full Text PDF

Real-time and continuous monitoring of lactate levels in sweat has been used as an indicator of physiological information to evaluate exercise outcomes and sports performance. We developed an optimal enzyme-based biosensor to detect the concentrations of lactate in different fluids (i.e.

View Article and Find Full Text PDF

This article presents a multimodal electrochemical sensing system-on-chip (SoC), including the functions of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and temperature sensing. CV readout circuitry achieves an adaptive readout current range of 145.5 dB through an automatic range adjustment and resolution scaling technique.

View Article and Find Full Text PDF

The progress of spontaneous energy generation from ubiquitous moisture is hindered the low output current and intermittent operating voltage of the moisture-electric generators. Herein a novel and efficient ionic hydrogel moisture-electric generator (IHMEG) is developed by rational combination of poly(vinyl alcohol), phytic acid, and glycerol-water binary solvent. Thanks to the synergistic effect of notable moisture-absorption capability and fast ion transport capability in the ionic hydrogel network, a single IHMEG unit of 0.

View Article and Find Full Text PDF

Multimodal sensing can provide a comprehensive and accurate diagnosis of biological information. This paper presents a fully integrated wireless multimodal sensing chip with voltammetric electrochemical sensing at a scanning rate range of 0.08-400 V/s, temperature monitoring, and bi-phasic electrical stimulation for wound healing progress monitoring.

View Article and Find Full Text PDF

Controlling the development and morphology of neurons is important for basic neuroscience research as well as for applications in nerve regeneration and neural interfaces. Various studies have shown that nanoscale topographies can promote the development of neuronal cells and the differentiation of neural stem cells; however, the fabrication of these nanotopographical features often involves expensive and sophisticated techniques. Here, we employ nanosphere lens lithography combined with UV-LED technology to create nanopatterns on an SU-8 photoresist.

View Article and Find Full Text PDF

This paper presents a pulse-stimulus sensor readout circuit for use in cardiovascular disease examinations. The sensor is based on a gold nanoparticle plate with an antibody post-modification. The proposed system utilizes gated pulses to detect the biomarker Cardiac Troponin I in an ionic solution.

View Article and Find Full Text PDF

Huntington disease (HD) is a hereditary neurodegenerative disorder caused by mutant huntingtin (mHTT). Phosphorylation at serine-421 (pS421) of mHTT has been shown to be neuroprotective in cellular and rodent models. However, the genetic context of these models differs from that of HD patients.

View Article and Find Full Text PDF

Immense amount of high-content image data generated in drug discovery screening requires computationally driven automated analysis. Emergence of advanced machine learning algorithms, like deep learning models, has transformed the interpretation and analysis of imaging data. However, deep learning methods generally require large number of high-quality data samples, which could be limited during preclinical investigations.

View Article and Find Full Text PDF

Mutations in LRRK2 are currently recognized as the most common monogenetic cause of Parkinsonism. The elevation of kinase activity of LRRK2 that frequently accompanies its mutations is widely thought to contribute to its toxicity. Accordingly, many groups have developed LRRK2-specific kinase inhibitors as a potential therapeutic strategy.

View Article and Find Full Text PDF

Because of the properties of high charge mobility, large detection area and chemical stability of graphene, it has been applied in many biomedical applications. Graphene oxide (GO) with abundant oxygenated functional groups is easily to form an aqueous suspension by sonication. Here, the exposed areas on the patterned-circuit silicon-based chips were first modified by (3-aminopropyl) trimethoxysilane (APTMS) for later chemically immobilized GO.

View Article and Find Full Text PDF

Afadin 6 (AF-6) is an F-actin binding multidomain-containing scaffolding protein that is known for its function in cell-cell adhesion. Interestingly, besides this well documented role, we recently found that AF-6 is a Parkin-interacting protein that augments Parkin/PINK1-mediated mitophagy. Notably, mutations in Parkin and PINK1 are causative of recessively inherited forms of Parkinson's disease (PD) and aberrant mitochondrial homeostasis is thought to underlie PD pathogenesis.

View Article and Find Full Text PDF

Despite measures to reduce disease transmission, a risk can occur when blood glucose meters (BGMs) are used on multiple individuals or by caregivers assisting a patient. The laboratory and in-clinic performance of a BGM system before and after disinfection should be demonstrated to guarantee accurate readings and reliable control of blood glucose (BG) for patients. In this study, an effective disinfection procedure, conducting wiping 10 times to assure a one minute contact time of the disinfectant on contaminated surface, was first demonstrated using test samples of the meter housing materials, including acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA), and polycarbonate (PC), in accordance with ISO 15197:2013.

View Article and Find Full Text PDF

Background: The emergence of advanced IT and cloud services has beneficially supported the information-intensive tourism industry, simultaneously caused extreme competitions in attracting customers through building efficient service platforms. On response, numerous nations have implemented cloud platforms to provide value-added sightseeing information and personal intelligent service experiences. Despite these efforts, customers' actual perspectives have yet been sufficiently understood.

View Article and Find Full Text PDF

Over the last decade, lymph node flap (LNF) transfer has turned out to be an effective method in the management of lymphoedema of extremities. Most of the time, the pockets created for LNF cannot be closed primarily and need to be resurfaced with split thickness skin grafts. Partial graft loss was frequently noted in these cases.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs.

View Article and Find Full Text PDF

Background: Surgical options for breast reconstruction include alloplastic and autogenous reconstructions. In autologous cases where the abdomen is not a suitable primary donor site, secondary donor sites such as the thigh or buttock are considered. The aim of this report is to describe a novel approach, the combined transverse upper gracilis and profunda artery perforator (TUGPAP) flap, aimed at medium to large volume breast reconstruction, with a single donor site used per breast.

View Article and Find Full Text PDF

Silicon nanowire field-effect transistor (SiNW FET) devices have been interfaced with cells; however, their application for noninvasive, real-time monitoring of interfacial effects during cell growth and differentiation on SiNW has not been fully explored. Here, we cultured rat adrenal pheochromocytoma (PC12) cells, a type of neural progenitor cell, directly on SiNW FET devices to monitor cell adhesion during growth and morphological changes during neuronal differentiation for a period of 5-7 d. Monitoring was performed by measuring the non-Faradaic electrical impedance of the cell-SiNW FET system using a precision LCR meter.

View Article and Find Full Text PDF

In order to gain insight into how interfacial effects influence cell responses, chemically modified anodized TiO2 nanotubes (ATNs) were used to simultaneously investigate the effects of nanoscale substrate structure and angstrom-scale chemicals on cell morphological change and cell growth. Two small chemicals were used to modify the ATNs, namely, 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), resulting in APTMS-modified ATNs (APTMS-ATNs) and MPTMS-modified ATNs (MPTMS-ATNs), respectively. In our in vitro observation of NIH/3T3 fibroblasts, cells thrived on both unmodified and modified ATNs.

View Article and Find Full Text PDF

Based on Markus and Kitayama's (1991) theory, this study was conducted to examine whether the association between emotional suppression and interpersonal harmony would be moderated by cultural group (i.e., Chinese and European Americans) and an Asian cultural value (i.

View Article and Find Full Text PDF

Asymmetric cell division of Drosophila neural stem cells or neuroblasts is an important process which gives rise to two different daughter cells, one of which is the stem cell itself and the other, a committed or differentiated daughter cell. During neuroblast asymmetric division, atypical Protein Kinase C (aPKC) activity is tightly regulated; aberrant levels of activity could result in tumorigenesis in third instar larval brain. We identified clueless (clu), a genetic interactor of parkin (park), as a novel regulator of aPKC activity.

View Article and Find Full Text PDF