Publications by authors named "Shuping Jia"

Fabricating insoluble and infusible porous materials into gels for advanced applications is of great importance but has formidable challenges. Here, we present a general, facile, and scalable protocol to fabricate covalent organic framework (COF) gels using a group-protection synthesis strategy. To prove the generality of this strategy, we successfully prepared 10 types of COF organohydrogels with high crystallinity, porosity, good mechanical properties, and excellent solvent and freezing resistance.

View Article and Find Full Text PDF

Two C H -selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C H /C H ) under humid conditions to produce polymer-grade pure C H . Experimental results reveal that these two MOFs not only adsorb a high amount of C H but also display good C H /C H selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C H /C H under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C H /C H under humid conditions.

View Article and Find Full Text PDF

Developing new materials for anhydrous proton conduction under high-temperature conditions is significant and challenging. Herein, we create a series of highly crystalline covalent organic frameworks (COFs) via a pore engineering approach. We simultaneously engineer the pore geometry (generating concave dodecagonal nanopores) and pore surface (installing multiple functional groups such as -C=N-, -OH, -N=N- and -CF ) to improve the utilization efficiency and host-guest interaction of proton carriers, hence benefiting the enhancement of anhydrous proton conduction.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic intermittent hypoxia (CIH), used as an animal model for sleep apnea, modifies the excitability of neurons in the caudal nucleus of the solitary tract (cNTS), particularly affecting inhibitory signals.
  • Studies show that after CIH exposure, there is an increase in glycinergic activity and changes in inhibitory neurotransmission compared to those treated with normoxia, including a shift from GABA-only to a combination of GABA and glycine inputs.
  • Astrocyte changes observed in the cNTS during CIH were linked to these modifications in glycine receptor activity, suggesting their involvement in facilitating increased inhibitory signaling in response to hypoxia.
View Article and Find Full Text PDF

To date, numerous zirconium cluster-based metal-organic frameworks (Zr-MOFs) with attractive physical properties have been achieved thanks to tailorable organic linkers and versatile Zr clusters. Nevertheless, in comparison with the most-used high-symmetry organic linkers, low-symmetry linkers have rarely been exploited in the construction of Zr-MOFs. Despite challenges in predicting the structure and topology of the MOF, linker desymmetrization presents opportunities for the design of Zr-MOFs with unusual topologies and unexpected functionalities.

View Article and Find Full Text PDF

Presented herein is a group of highly stable Zr-based metal-organic frameworks with bowl-shaped dihydroanthracene-based tetratopic linkers as building blocks. Structural analysis reveals that these frameworks are all two-dimensional but comprise three distinct connectivities of Zr nodes. By using the steric hindrance of the nonplanar linker, the connectivity of Zr node can be tuned from 8-c to unusual 4-c.

View Article and Find Full Text PDF

We present here the synthesis of one enantiomeric pair of metal-organic framework materials comprised of a unique multioriented double-helix structure from an achiral spirocenter ligand. Our study clearly shows that the chiral MOF material encompasses concurrently multiple nonlinear-optical functions in the solid state: the noncentrosymmetric structural feature brings the chiral MOF high second-harmonic-generation efficiency; the incorporation of the spirocenter ligand can efficiently produce two-photon-excited photoluminescence with a larger-action cross-sectional value.

View Article and Find Full Text PDF

The senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Hair cells transduce mechanical stimuli into electrical activity. Loss of hair cells as a result of aging or exposure to noise and ototoxic drugs is the major cause of noncongenital hearing and balance deficits.

View Article and Find Full Text PDF

The molecular components of store-operated Ca influx channels (SOCs) in proliferative and migratory vascular smooth muscle cells (VSMCs) are quite intricate with many channels contributing to SOCs. They include the Ca-selective Orai1 and members of the transient receptor potential canonical (TRPC) channels, which are activated by the endoplasmic reticulum Ca sensor STIM1. The scaffolding protein Homer assembles SOC complexes, but its role in VSMCs is not well understood.

View Article and Find Full Text PDF

The hallmark of mechanosensory hair cells is the stereocilia, where mechanical stimuli are converted into electrical signals. These delicate stereocilia are susceptible to acoustic trauma and ototoxic drugs. While hair cells in lower vertebrates and the mammalian vestibular system can spontaneously regenerate lost stereocilia, mammalian cochlear hair cells no longer retain this capability.

View Article and Find Full Text PDF

Background: Drugs targeting individual G protein-coupled receptors are used as asthma therapies, but this strategy is limited because of G protein-coupled receptor signal redundancy. Regulator of G protein signaling 2 (RGS2), an intracellular selective inhibitor of multiple bronchoconstrictor receptors, may play a central role in the pathophysiology and treatment of asthma.

Objective: We defined functions and mechanisms of RGS2 in regulating airway hyperresponsiveness (AHR), the pathophysiologic hallmark of asthma.

View Article and Find Full Text PDF

Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis.

View Article and Find Full Text PDF

Prestin is the motor protein of cochlear outer hair cells (OHCs) with the unique capability of performing direct, rapid, and reciprocal electromechanical conversion. Prestin consists of 744 amino acids with a molecular mass of approximately 81.4 kDa.

View Article and Find Full Text PDF

Cochlear outer hair cells (OHCs) rapidly change their length and stiffness when their membrane potential is altered. Prestin, the motor protein for this electromotility, is present along the OHC lateral plasma membrane where there is a high density of intra-membrane protein particles (IMPs). However, it is not known to what extent prestin contributes to this unusual dense population of proteins and overall organization of the membrane to generate the unique electromechanical response of OHCs.

View Article and Find Full Text PDF

Cochlear hair cells transduce mechanical stimuli into electrical activity. The site of hair cell transduction is the hair bundle, an array of stereocilia with different height arranged in a staircase. Tip links connect the apex of each stereocilium to the side of its taller neighbor.

View Article and Find Full Text PDF

It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin.

View Article and Find Full Text PDF

Glucose transporter 5 (Glut5) is a high-affinity fructose transporter. It was proposed to be a motor protein or part of the motor complex required for cochlear amplification in outer hair cells (OHCs). Here we show that, in contrast to previous reports, Glut5 is undetectable, and possibly absent, in OHCs harvested from wildtype mice.

View Article and Find Full Text PDF

The cochlear outer hair cell (OHC), which plays a crucial role in mammalian hearing through its unique voltage-dependent motility, has been established as a primary target of the ototoxicity of aminoglycoside antibiotics. These polycationic drugs are also known to block a wide variety of ion channels, purinergic ionotropic channels, and nicotinic ACh receptors in hair cells in vitro. The OHC motor protein, prestin, is a voltage-sensitive transmembrane protein containing several negatively charged residues on both intra- and extracellular surface.

View Article and Find Full Text PDF

The remarkable sensitivity and frequency selectivity of the mammalian cochlea is attributed to a unique amplification process that resides in outer hair cells (OHCs). Although the mammalian-specific somatic motility is considered a substrate of cochlear amplification, it has also been proposed that somatic motility in mammals simply acts as an operating-point adjustment for the ubiquitous stereocilia-based amplifier. To address this issue, we created a mouse model in which a mutation (C1) was introduced into the OHC motor protein prestin, based on previous results in transfected cells.

View Article and Find Full Text PDF

Inner hair cells (IHCs) are the true sensory receptors in the cochlea; they transmit auditory information to the brain. IHCs respond to basilar membrane (BM) vibration by producing a transducer current through mechanotransducer (MET) channels located at the tip of their stereocilia when these are deflected. The IHC MET current has not been measured from adult animals.

View Article and Find Full Text PDF

Objective: To investigate the triterpenoids from root of Achyranthes bidentata in Henan.

Method: Sephadex, normal-and reversed-phase column chromatographies were applied for the isolation and purification. The structure determinations were performed by means of physiochemical properties, MS and NMR data analyses.

View Article and Find Full Text PDF

Mammalian hearing owes its remarkable sensitivity and frequency selectivity to a local mechanical feedback process within the cochlea. Cochlear outer hair cells (OHCs) function as the key elements in the feedback loop in which the fast somatic motility of OHCs is thought to be the source of cochlear amplification. An alternative view is that amplification arises from active hair-bundle movement, similar to that seen in nonmammalian hair cells.

View Article and Find Full Text PDF

Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process.

View Article and Find Full Text PDF

The outer hair cell (OHC) lateral wall is a unique trilaminate structure consisting of the plasma membrane, the cortical lattice, and subsurface cisternae. OHCs are capable of altering their length in response to transmembrane voltage change. This so-called electromotile response is presumed to result from conformational changes of membrane-bound protein molecules, named prestin.

View Article and Find Full Text PDF

It is generally believed that mechanical amplification by cochlear hair cells is necessary to enhance the sensitivity and frequency selectivity of hearing. In the mammalian ear, the basis of cochlear amplification is believed to be the voltage-dependent electromotility of outer hair cells (OHCs). The avian basilar papilla contains tall and short hair cells, with the former being comparable to inner hair cells, and the latter comparable to OHCs, based on their innervation patterns.

View Article and Find Full Text PDF