Publications by authors named "Shupei Wang"

An ultra-thin quasi-solid electrolyte (QSE) with dendrite-inhibiting properties is a requirement for achieving high energy density quasi-solid lithium metal batteries (LMBs). Here, a 5.1 µm rigid QSE layer is directly designed on the cathode, in which Kevlar (poly(p-phenylene terephthalate)) nanofibers (KANFs) with negatively charged groups bridging metal-organic framework (MOF) particles are served as a rigid skeleton, and non-flammable deep eutectic solvent is selected to be encapsulated into the MOF channels, combined with in situ polymerization to complete safe electrolyte system with high rigidness and stability.

View Article and Find Full Text PDF

Background: Few studies have focused on the relationship between the traditional Chinese medicine constitution (TCMC) and metabolic dysfunction-associated fatty liver disease (MAFLD) in older populations. We sought to investigate the distribution of MAFLD and the TCMC in older people, and provide a theoretical basis for TCMC-based management of MAFLD in this population.

Methods: A cross-sectional study was conducted among older (≥65 years) individuals in Zhongshan, China.

View Article and Find Full Text PDF

This study identified and tested fruit-isolated yeasts against three major postharvest citrus pathogens, namely, , , and , and further evaluated the impact of FeCl on the biocontrol efficiency of pulcherrimin-producing strains. Based on the characterization of the pigmented halo surrounding the colonies and the analysis of the D1/D2 domain of 26S rDNA, a total of 46 sp. were screened and identified.

View Article and Find Full Text PDF
Article Synopsis
  • Physical activity (PA) might help prevent high blood pressure (HTN), but how obesity affects this relationship hasn't been studied before.
  • A study with 4,710 people aged 41 and older showed that many had HTN, and those who didn't exercise enough had a higher risk of developing it.
  • The findings suggest that keeping a healthy weight, especially around the waist, and getting enough exercise can help control high blood pressure.
View Article and Find Full Text PDF

The biocontrol effectiveness of Metschnikowia citriensis relies on its production of pulcherriminic acid (PA), which forms insoluble and stable pulcherrimin pigments by chelating iron ions, this inhibits pathogen growth by preventing their utilization of chelated Fe. In this study, ΔM. citriensis, which did not produce PA, was used as a control to examine changes in its biocontrol effectiveness by adding tryptophan to the medium.

View Article and Find Full Text PDF

Background And Purpose: In recent years, the incidence of obesity in people aged 60 and over has increased significantly, and abdominal obesity has been recognized as an independent risk factor for diabetes. Aging causes physiologic decline in multiple body systems, leading to changes in obesity indicators such as BMI. At present, the relationship between abdominal obesity markers and Diabetes mellitus (DM) in people aged 60 years and older remains unclear.

View Article and Find Full Text PDF

Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria.

View Article and Find Full Text PDF

The aim of this work was to study the capability and mechanism of enhancing the yield of pulcherriminic acid (PA) produced by Metschnikowia citriensis FL01 with the help of tryptophan for the control of postharvest diseases on citrus caused by Penicillium italicum, Geotrichum citri-aurantii and Penicillium digitatum. The adding of 10 mmol/L tryptophan to the growth medium resulted in the widest pulcherrimin pigment zone produced by M. citriensis FL01.

View Article and Find Full Text PDF

Deficiency of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase (HL) is an autosomal recessive inborn error of acyl-CoA metabolism affecting the last step of leucine degradation. Patients with HL deficiency (HLD) can develop a potentially fatal cardiomyopathy. We created mice with cardiomyocyte-specific HLD (HLHKO mice), inducing Cre recombinase-mediated deletion of exon 2 at two months of age.

View Article and Find Full Text PDF

Propionic acidemia (PA) is a severe autosomal recessive metabolic disease caused by deficiency of propionyl-CoA carboxylase (PCC). We studied PA transgenic (Pat) mice that lack endogenous PCC but express a hypoactive human PCCA cDNA, permitting their survival. Pat cohorts followed from 3 to 20 weeks of age showed growth failure and lethal crises of lethargy and hyperammonemia, commoner in males (27/50, 54%) than in females (11/52, 21%) and occurring mainly in Pat mice with the most severe growth deficiency.

View Article and Find Full Text PDF

This study investigated the effect of arginine (Arg) on the antagonistic activity of Metschnikowia citriensis against sour rot caused by Geotrichum citri-aurantii in postharvest citrus, and evaluated the possible mechanism therein. Arg treatment up-regulated the PUL genes expression, and significantly induced the pulcherriminic acid (PA) production of M. citriensis, which related to the capability of iron depletion of M.

View Article and Find Full Text PDF

Metschnikowia citriensis FL01 has great potential for biocontrol applications for its excellent biocontrol efficacy on postharvest diseases of citrus fruit, and the iron depletion by pulcherriminic acid (PA) and then formation of insoluble pigment pulcherrimin had been speculated as an important action mechanism. To identify the genes involved in pulcherrimin synthesis and reutilization in M. citriensis FL01, we de novo assembled the genome of M.

View Article and Find Full Text PDF

This study investigated the biocontrol efficiency of Metschnikowia citriensis strain FL01 against Geotrichum citri-aurantii, and evaluated possible mechanisms. The results showed that M. citriensis could effectively control the development of sour rot, and significantly inhibit the mycelial growth and spore germination of G.

View Article and Find Full Text PDF

Background: Alzheimer's disease is characterized by the accumulation of amyloid beta (Aβ) and the formation of neurofibrillary tangles. Aβ is the main constituent of senile plaques and is largely involved in neuronal death and neuroinflammation. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is one of the main transcriptional coactivator and has been related to many fields such as energy metabolism, cardiovascular disease, neurodegenerative disorders, and so on.

View Article and Find Full Text PDF

Aims/hypothesis: To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions.

Methods: Atgl mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT;Atgl mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD.

View Article and Find Full Text PDF

Most phosphoproteomic studies to date have been limited to the identification of phosphoproteins and their phosphorylation sites, and have not assessed the stoichiometry of protein phosphorylation, a critical parameter reflecting the dynamic equilibrium between phosphorylated and non-phosphorylated pools of proteins. Here, we used a method for measuring phosphorylation stoichiometry through isotope tagging and enzymatic dephosphorylation of tryptic peptides. Using this method, protein digests are divided into two equal aliquots that are modified with either light or heavy isotope tags.

View Article and Find Full Text PDF

Fat cell lipolysis, the cleavage of triglycerides and release of fatty acids and glycerol, evolved to enable survival during prolonged food deprivation but is paradoxically increased in obesity, in which a surfeit of all energy metabolites is found. Essential, previously-unsuspected components have been discovered in the lipolytic machinery, at the protective interface of the lipid droplet surface and in the signaling pathways that control lipolysis. At least two adipocyte lipases are important for controlling lipolysis, hormone-sensitive lipase (HSL) and adipocyte triglyceride lipase (ATGL).

View Article and Find Full Text PDF

Macrophage infiltration of white adipose tissue (WAT) is implicated in the metabolic complications of obesity. The precipitating event(s) and function(s) of macrophage infiltration into WAT are unknown. We demonstrate that >90% of all macrophages in WAT of obese mice and humans are localized to dead adipocytes, where they fuse to form syncytia that sequester and scavenge the residual "free" adipocyte lipid droplet and ultimately form multinucleate giant cells, a hallmark of chronic inflammation.

View Article and Find Full Text PDF

Insulin resistance in skeletal muscle and heart plays a major role in the development of type 2 diabetes and diabetic heart failure and may be causally associated with altered lipid metabolism. Hormone-sensitive lipase (HSL) is a rate-determining enzyme in the hydrolysis of triglyceride in adipocytes, and HSL-deficient mice have reduced circulating fatty acids and are resistant to diet-induced obesity. To determine the metabolic role of HSL, we examined the changes in tissue-specific insulin action and glucose metabolism in vivo during hyperinsulinemic euglycemic clamps after 3 wk of high-fat or normal chow diet in awake, HSL-deficient (HSL-KO) mice.

View Article and Find Full Text PDF