As a natrium superionic conductor, NASICON-type NaMnTi(PO) (NMTP) has garnered increasing attention for large-scale sodium-ion batteries due to its high stability and power densities. Nevertheless, it still suffers from an inferior rate capability and poor cycling longevity, arising from sluggish intrinsic kinetics and severe structural degradation. Herein, vanadium (V) is used as a dopant for equal substitution of manganese (Mn) and titanium (Ti) in NMTP to alleviate voltage hysteresis and enhance the cycling performance.
View Article and Find Full Text PDFAssessing the activity of DNA methyltransferases (MTases) and screening for methyltransferase inhibitors not only allow for a deep exploration of the role of methylation regulation in disease initiation and progression but also provide an important experimental and clinical basis for the diagnosis and treatment of diseases. Herein, a new COFs functionalized electrochemical biosensor has been developed to detect DNA adenine methylation (Dam) MTase activity with high sensitivity and rapidity by taking advantage of the DNA walker and rolled circular strand displacement amplification (RC-SDA) reaction. Specifically, hairpin probe H1 was methylated by Dam MTase, followed by methylation site-specific cleavage of DpnI enzyme to generate the S5 probe.
View Article and Find Full Text PDF