The design and development of new and efficient catalyst binder materials are important for improving cell performance in high-temperature proton-exchange membrane fuel cells (HT-PEMFCs). In this study, a series of tetrafluorophenyl phosphonic acid-based binder materials (PF-y-P, y=1, 0.83, and 0.
View Article and Find Full Text PDFFor bacterial adhesion and biofilm formation, a thorough understanding of the mechanism and effective modulating is lacking due to the complex extracellular electron transfer (EET) at bacteria-surface interfaces. Here, we explore the adhesion behavior of a model electroactive bacteria under various metabolic conditions by an integrated electrochemical single-cell force microscopy system. A nonlinear model between bacterial adhesion force and electric field intensity is established, which provides a theoretical foundation for precise tuning of bacterial adhesion strength by the surface potential and the direction and flux of electron flow.
View Article and Find Full Text PDFThe distribution of ion conductive channels on the Nafion membrane surface, which determines the formation of the three-phase boundary, plays a very important role in improving the performance of proton-exchange membrane fuel cells. Therefore, understanding the microstructures at the catalyst layer/membrane interfaces of proton-exchange membranes is essential. Although current-sensing atomic force microscopy (AFM) can present some surface conductance data, localized impedance measurement providing more accurate proton-transport information is desirable.
View Article and Find Full Text PDF