Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH.
View Article and Find Full Text PDFNoncoding RNAs have been shown to play essential roles in hypoxic pulmonary hypertension (HPH). Our preliminary data showed that HPH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the whole transcriptome RNA expression patterns and interactions in a mice HPH model treated with FGF21.
View Article and Find Full Text PDFThe proliferation, migration and apoptotic resistance of pulmonary artery smooth muscle cells (PASMCs) are central to the progression of pulmonary arterial hypertension (PAH). Our previous study identified that fibroblast growth factor 21 (FGF21) regulates signalling pathway molecules, such as peroxisome proliferator-activated receptor gamma (PPARγ), to play an important role in PAH treatment. However, the biological roles of miRNAs in these effects are not yet clear.
View Article and Find Full Text PDF