Publications by authors named "Shuo Qiao"

Background: Cancer imposes significant psychological distress on both patients and caregivers. Dyadic interventions are designed to concurrently address the health problems of both, yet there remains limited evidence as to which specific dyadic interventions yield the most effective outcomes for both partners.

Objectives: To systematically synthesize and evaluate the comparative efficacy of various dyadic interventions on a wide range of outcomes within cancer patient-caregiver dyads.

View Article and Find Full Text PDF

In order to improve the walking stability of a biped robot in multiple scenarios and reduce the complexity of the Central Pattern Generator (CPG) model, a new CPG walking controller based on multivariate linear mapping was proposed. At first, in order to establish a dynamics model, the lower limb mechanical structure of the biped robot was designed. According to the Lagrange and angular momentum conservation method, the hybrid dynamic model of the biped robot was established.

View Article and Find Full Text PDF

The high-efficiency preparation of large-area microstructures of optical materials and precision graphic etching technology is one of the most important application directions in the atomic and near-atomic-scale manufacturing industry. Traditional focused ion beam (FIB) and reactive ion etching (RIE) methods have limitations in precision and efficiency, hindering their application in automated mass production. The pulsed ion beam (PIB) method addresses these issues by enhancing ion beam deflection to achieve high-resolution material removal on a macro scale, which can reach the equivalent removal resolution of 6.

View Article and Find Full Text PDF

Nanoscale structures can produce extreme strain that enables unprecedented material properties, such as tailored electronic bandgap, elevated superconducting temperature and enhanced electrocatalytic activity. While uniform strains are known to elicit limited effects on heat flow, the impact of inhomogeneous strains has remained elusive owing to the coexistence of interfaces and defects. Here we address this gap by introducing inhomogeneous strain through bending individual silicon nanoribbons on a custom-fabricated microdevice and measuring its effect on thermal transport while characterizing the strain-dependent vibrational spectra with sub-nanometre resolution.

View Article and Find Full Text PDF

Understanding land structure change and stability in the process of oasisization is particularly important for the desertification control in sandy land. Based on land use data of eight periods from 1980 to 2020, we extracted the spatial distribution information of oasis land in Mu Us Sandy Land, and analyzed the spatio-temporal variations of land transformation patterns and stability of oasis land with overlay analysis and grid analysis. The results showed that desertification in the Mu Us Sandy Land had reversed, with a significant process of oasis.

View Article and Find Full Text PDF

Dimensionality of materials is closely related to their physical properties. For two-dimensional (2D) semiconductors such as monolayer molybdenum disulfide (MoS), converting them from 2D nanosheets to one-dimensional (1D) nanoscrolls could contribute to remarkable electronic and optoelectronic properties, yet the rolling-up process still lacks sufficient controllability, which limits the development of their device applications. Herein we report a modified solvent evaporation-induced rolling process that halts at intermediate states and achieve MoS nanoscrolls with high yield and decent axial uniformity.

View Article and Find Full Text PDF

For the high-precision fabrication of a continuous phase plate (CPP), a combined decoupling algorithm of single-step decoupling based on the Clairaut-Schwarz theorem and global decoupling by stagewise iteration is proposed. It attempts to address the problem of the low accuracy and limitation of the existing slope-based figuring (SF) model in two-dimensional applications caused by the vector removal coupling between the tool slope influence function and the material removal slope due to the inherent convolution effect in the SF model. The shortcomings of CPP interferometry and the application bottleneck of the Hartmann test in traditional height-based figuring model are studied.

View Article and Find Full Text PDF

Heavy metal(loid) (HM) contamination in agricultural soils, particularly in areas severely impacted by smelting industries, has attracted worldwide attention. In this study, agricultural soils were collected in a flourishing multimetal smelting area near the Yellow River in central China. By an integrated approach encompassing the positive matrix factorization model, ordinary kriging interpolation and hierarchical clustering analysis (PMF-OK-HC), a total of four major sources and their mass contributions were identified, namely, soil parent material (56.

View Article and Find Full Text PDF

A two-dimensional geometrical waveguide enables ultra-thin augmented reality (AR) near-eye display (NED) with wide field of view (FOV) and large exit-pupil diameter (EPD). A conventional design method can efficiently design waveguides that meet the requirements, but is unable to fully utilize the potential display performance of the waveguide. A forward-ray-tracing waveguide design method with maximum FOV analysis is proposed, enabling two-dimensional geometrical waveguides to achieve their maximum FOV while maintaining minimum dimensions.

View Article and Find Full Text PDF

Conventional research in structured light measurements has utilized light intensity as a channel for information. The polarization of light can be used as an additional channel of information. In this paper, a method based on the superposition of multiple polarization states is proposed to encode structured light.

View Article and Find Full Text PDF

Tailoring heat flow in solids has profound implications for the innovation of functional thermal devices. However, the current methods face technological challenges related to system complexity, material stability, and operating temperature. In this study, we demonstrated efficient heat flow modulation in a single material without a phase transition, using a simple and entirely material-independent strategy, kinked nanostructure patterning, at near-ambient temperature.

View Article and Find Full Text PDF

Fused silica has become the preferred optical material in the field of inertial confinement fusion (ICF) due to its excellent performance; however, these costly optical elements are vulnerable, and their manufacture is time-consuming. Therefore, the restoration of laser-induced damage for these optical elements is of great value. To restrain the post-restoration raised rim problem in the CO laser repair process to improve the restoration quality, the separate influences of key parameters of laser power, irradiation duration, and laser beam diameter on post-restoration pit morphology are compared in combined simulation and experimental studies.

View Article and Find Full Text PDF

In view of the problems of large surface roughness and low removal efficiency caused by the existing sapphire processing process, a combined polishing process based on temperature control computer controlled optical surfacing-magnetic rheology is proposed. The polishing removal mechanism of sapphire material polishing and the law of processing surface roughness change are studied. The optimal process parameters are obtained by designing the orthogonal experiments.

View Article and Find Full Text PDF

An error-correction code (ECC) sequencing approach has recently been reported to effectively reduce sequencing errors by interrogating a DNA fragment with three orthogonal degenerate sequencing-by-synthesis (SBS) reactions. However, similar to other non-single-molecule SBS methods, the reaction will gradually lose its synchronization within a molecular colony in ECC sequencing. This phenomenon, called dephasing, causes sequencing error, and in ECC sequencing, induces distinctive dephasing patterns.

View Article and Find Full Text PDF

Eliminating errors in next-generation DNA sequencing has proved challenging. Here we present error-correction code (ECC) sequencing, a method to greatly improve sequencing accuracy by combining fluorogenic sequencing-by-synthesis (SBS) with an information theory-based error-correction algorithm. ECC embeds redundancy in sequencing reads by creating three orthogonal degenerate sequences, generated by alternate dual-base reactions.

View Article and Find Full Text PDF

Asymmetric [3 + 2] cycloaddition of chiral N-phosphonyl imines with methyl isocyanoacetate has been established, enabling controllable/switchable stereoselectivity access to 21 examples of cycloadducts with good to excellent chemical yields (up to 92%) and high diastereoselectivities (up to 99:1 dr). The cycloaddition reaction promoted by CsCO resulted in diastereoenriched (4R,5S)-products with >99:1 dr. However, it showed the reverse stereoselectivity as diastereoenriched (4S,5R) products when AgF was employed as the catalyst.

View Article and Find Full Text PDF

The design and synthesis of recyclable imidazolidinone catalysts using GAP chemistry/technique was described. Their applications in asymmetric Diels-Alder and Friedel-Crafts reactions with α,β-unsaturated aldehydes resulted in excellent yields and higher enantioselectivities than previous processes. As recyclable small molecular catalysts, phosphonylated imidazolidinones can be recovered and reused for up to three runs without costing significant decrease in catalytic activity.

View Article and Find Full Text PDF

An efficient catalytic system has been established for the asymmetric boron conjugate addition of B2pin2 onto α-functionalized (involving C, N, O, and Cl) α,β-unsaturated carbonyls under mild, neutral conditions involving Cu[(S)-(R)-ppfa]Cl, AgNTf2, and alcohols. The dual additives of AgNTf2 and alcohols were found to play crucial roles for achieving high catalytic activity and enantio- and diastereoselectivity (up to 98% ee and 70:1 dr).

View Article and Find Full Text PDF

Fluorogenic sequencing is a sequencing-by-synthesis technology that combines the advantages of pyrosequencing and fluorescence detection. With native duplex DNA as the major product, we employ polymerase to incorporate the complement- arily matched terminal phosphate-labeled fluorogenic nucleotides into the DNA template and release halogen-fluorescein as the reporter. This red-emitting fluorophore successfully avoids spectral overlap with the autofluorescence background of the flow chip.

View Article and Find Full Text PDF

Learning to communicate with alternative augmentative communication devices can be difficult because of the difficulty of achieving controlled interaction while simultaneously learning to communicate. What is needed is a device that harnesses a child's natural motor capabilities and provides the means to reinforce them. We present a kinematic sensor-based system that learns a child's natural gestural capability and allows him/her to practice those capabilities in the context of a game.

View Article and Find Full Text PDF