Publications by authors named "Shunya Ohmura"

EWSR1::FLI1-mediated dysregulation of cellular machinery opens up potential new avenues for Ewing sarcoma treatment. A recent study demonstrates that pharmacologic ATR kinase inhibition dramatically synergizes with low-dose cisplatin through EWSR1::FLI1-dependent rewiring of transcription, DNA repair, and translation machinery, which could maximize the therapeutic window of the combinatory therapy. See related article by Jess et al.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown.

View Article and Find Full Text PDF

Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity.Here, we show in the EwS model that - capitalizing on neomorphic DNA-binding preferences - the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is a hallmark of cancer. Yet, many childhood cancers, such as Ewing sarcoma (EwS), feature remarkably 'silent' genomes with minimal CIN. Here, we show in the EwS model how uncoupling of mitosis and cytokinesis via targeting protein regulator of cytokinesis 1 (PRC1) or its activating polo-like kinase 1 (PLK1) can be employed to induce fatal genomic instability and tumor regression.

View Article and Find Full Text PDF

Subcutaneous murine xenograft models are one of the most commonly used in vivo experimental methods in the cancer research field. Due to the lack of appropriate animal models for Ewing sarcoma, subcutaneous murine xenograft models currently offer the simplest way to investigate antineoplastic effects of therapeutics or biological functions of target genes in vivo. In order to properly carry out tumor growth analysis via subcutaneous xenografts of Ewing sarcoma cells many factors should be taken into account beforehand at the planning phase of experiments.

View Article and Find Full Text PDF

Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive cancer displaying an undifferentiated small-round-cell histomorphology that can be easily confused with a broad spectrum of differential diagnoses. Using comparative transcriptomics and immunohistochemistry (IHC), we previously identified BCL11B and GLG1 as potential specific auxiliary IHC markers for -positive EwS. Herein, we aimed at validating the specificity of both markers in a far larger and independent cohort of EwS (including -positive cases) and differential diagnoses.

View Article and Find Full Text PDF

While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4).

View Article and Find Full Text PDF

In prostate adenocarcinoma (PCa), distinction between indolent and aggressive disease is challenging. Around 50% of PCa are characterized by TMPRSS2-ERG (T2E)-fusion oncoproteins defining two molecular subtypes (T2E-positive/negative). However, current prognostic tests do not differ between both molecular subtypes, which might affect outcome prediction.

View Article and Find Full Text PDF

Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes.

View Article and Find Full Text PDF

Background: Up to 30-40% of Ewing sarcoma (EwS) patients with non-metastatic disease develop local or metastatic relapse within a time span of 2-10 years. This is in part caused by the absence of prognostic biomarkers that can identify high-risk patients and thus assign them to risk-adapted monitoring and treatment regimens. Since cancer stemness has been associated with tumour relapse and poor patient outcomes, we investigated in the current study the prognostic potential SOX2 (sex determining region Y box 2) - a major transcription factor involved in development and stemness - which was previously described to contribute to the undifferentiated phenotype of EwS.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is an aggressive cancer characterized by chromosomal translocations generating fusions of the EWSR1 gene with ETS transcription factors (in 85% FLI1). EWSR1-FLI1 induces gene expression via binding to enhancer-like GGAA-microsatellites, whose activity correlates with the number of consecutive GGAA-repeats. Herein we investigate the role of the secretory neuropeptide CALCB (calcitonin-related polypeptide β) in EwS, which signals via the CGRP (calcitonin gene-related peptide) receptor complex, containing RAMP1 (receptor activity modifying protein 1) as crucial part for receptor specificity.

View Article and Find Full Text PDF

Soft-tissue sarcomas are rare, heterogeneous, and often aggressive mesenchymal cancers. Many of them are associated with poor outcome, partially because biomarkers that can identify high-risk patients are lacking. Studies on sarcomas are often limited by small sample-sizes rendering the identification of biomarkers difficult when focusing on individual cohorts.

View Article and Find Full Text PDF

Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data.

View Article and Find Full Text PDF

Ewing sarcoma is an undifferentiated small-round-cell sarcoma. Although molecular detection of pathognomonic fusions such as enables definitive diagnosis, substantial confusion can arise if molecular diagnostics are unavailable. Diagnosis based on the conventional immunohistochemical marker CD99 is unreliable due to its abundant expression in morphological mimics.

View Article and Find Full Text PDF