Newly emerging transformed epithelial cells are recognized and apically removed by surrounding normal cells through a biological event termed "cell competition". However, little is known about the mechanisms underlying this process. In a recent study, we describe that RAS/RasV12-transformed cells surrounded by normal cells exhibit decreased lysosomal activity accompanied with accumulation of autophagosomes.
View Article and Find Full Text PDFCell competition is a process by which unwanted cells are eliminated from tissues. Apical extrusion is one mode whereby normal epithelial cells remove transformed cells, but it remains unclear how this process is mechanically effected. In this study, we show that autophagic and endocytic fluxes are attenuated in RasV12-transformed cells surrounded by normal cells due to lysosomal dysfunction, and that chemical manipulation of lysosomal activity compromises apical extrusion.
View Article and Find Full Text PDFCellular senescence and cell competition are important tumor suppression mechanisms that restrain cells with oncogenic mutations at the initial stage of cancer development. However, the link between cellular senescence and cell competition remains unclear. Senescent cells accumulated during the in vivo aging process contribute toward age-related cancers via the development of senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFAt the initial stage of carcinogenesis, oncogenic transformation occurs in single cells within epithelial layers. However, the behavior and fate of the newly emerging transformed cells remain enigmatic. Here, using originally established mouse models, we investigate the fate of RasV12-transformed cells that appear in a mosaic manner within epithelial tissues.
View Article and Find Full Text PDFAbnormal/cancerous cells within healthy epithelial tissues undergo apical extrusion to protect against carcinogenesis, although they acquire invasive capacity once carcinogenesis progresses. However, the molecular mechanisms by which cancer cells escape from apical extrusion and invade surrounding tissues remain elusive. In this study, we demonstrate a molecular mechanism for cell fate switching during epithelial cell competition.
View Article and Find Full Text PDFFor the maintenance of epithelial homeostasis, various aberrant or dysfunctional cells are actively eliminated from epithelial layers. This cell extrusion process mainly falls into two modes: cell-competition-mediated extrusion and apoptotic extrusion. However, it is not clearly understood whether and how these processes are governed by common molecular mechanisms.
View Article and Find Full Text PDFNewly emerging transformed cells are often eliminated from the epithelium via cell competition with the surrounding normal cells. A number of recent studies using mammalian cell competition systems have demonstrated that cells with various types of oncogenic insults are extruded from the tissue in a cell death-dependent or -independent manner. Cell competition-mediated elimination of transformed cells, called EDAC (epithelial defense against cancer), represents an intrinsic anti-tumor activity within the epithelial cell society to reduce the risk of oncogenesis.
View Article and Find Full Text PDFBackground & Aims: Gastric chief cells, a mature cell type that secretes digestive enzymes, have been proposed to be the origin of metaplasia and cancer through dedifferentiation or transdifferentiation. However, studies supporting this claim have had technical limitations, including issues with the specificity of chief cell markers and the toxicity of drugs used. We therefore sought to identify genes expressed specifically in chief cells and establish a model to trace these cells.
View Article and Find Full Text PDFCell Struct Funct
September 2018
The Warburg effect is one of the hallmarks of cancer cells, characterized by enhanced aerobic glycolysis. Despite intense research efforts, its functional relevance or biological significance to facilitate tumor progression is still debatable. Hence the question persists when and how the Warburg effect contributes to carcinogenesis.
View Article and Find Full Text PDFp53 is a tumor suppressor protein, and its missense mutations are frequently found in human cancers. During the multi-step progression of cancer, p53 mutations generally accumulate at the mid or late stage, but not in the early stage, and the underlying mechanism is still unclear. In this study, using mammalian cell culture and mouse ex vivo systems, we demonstrate that when p53R273H- or p53R175H-expressing cells are surrounded by normal epithelial cells, mutant p53 cells undergo necroptosis and are basally extruded from the epithelial monolayer.
View Article and Find Full Text PDFDev Growth Differ
January 2018
In multicellular organisms, incidentally emerging suboptimal cells are removed to maintain homeostasis of tissues. The unfavorable cells are excluded by a process termed cell competition whereby the resident normal cells actively eliminate the unfit cells of the identical lineage. Although the phenomenon of cell competition was originally discovered in Drosophila, a number of recent studies have provided implications of cell competition in tissue regeneration, development and oncogenesis in mammals.
View Article and Find Full Text PDFRecent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells.
View Article and Find Full Text PDFNewly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells.
View Article and Find Full Text PDFAt the initial step of carcinogenesis, transformation occurs in single cells within epithelia, where the newly emerging transformed cells are surrounded by normal epithelial cells. A recent study revealed that normal epithelial cells have an ability to sense and actively eliminate the neighboring transformed cells, a process named epithelial defense against cancer (EDAC). However, the molecular mechanism of this tumor-suppressive activity is largely unknown.
View Article and Find Full Text PDFRecent studies have revealed that cell competition can occur between normal and transformed epithelial cells; normal epithelial cells recognize the presence of the neighboring transformed cells and actively eliminate them from epithelial tissues. Here, we have established a brand-new high-throughput screening platform that targets cell competition. By using this platform, we have identified Rebeccamycin as a hit compound that specifically promotes elimination of RasV12-transformed cells from the epithelium, though after longer treatment it shows substantial cytotoxic effect against normal epithelial cells.
View Article and Find Full Text PDFAt the initial stage of carcinogenesis, a mutation occurs in a single cell within a normal epithelial layer. We have previously shown that RasV12-transformed cells are apically extruded from the epithelium when surrounded by normal cells. However, the molecular mechanisms underlying this phenomenon remain elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2014
Arf GTPase-activating proteins (Arf GAP) play important roles in the formation of the membrane vesicles that traffic between subcellular membranous organelles. The small Arf GTPase-activating protein (SMAP) subfamily of Arf GAPs has two members, SMAP1 and SMAP2, in mammals. The present study investigated whether these two proteins may have an overlapping function in addition to their previously reported distinct functions.
View Article and Find Full Text PDFLigand-stimulated receptor tyrosine kinases (RTKs) are phosphorylated/ubiquitinated, endocytosed and transported to the lysosomes via endosomes/multivesicular bodies, resulting in the attenuation of signal transmission. If this physiological mechanism of RTK signal downregulation is perturbed, signal transduction persists and may contribute to cellular transformation. This article presents several such examples.
View Article and Find Full Text PDFRunx1 transcription factor is a key player in the development and function of T cells. Runx1 transcripts consist of two closely related isoforms (proximal and distal Runx1) whose expressions are regulated by different promoters. Which Runx1 isoform is expressed appears to be tightly regulated.
View Article and Find Full Text PDFThe trans-Golgi network (TGN) functions as a hub organelle in the exocytosis of clathrin-coated membrane vesicles, and SMAP2 is an Arf GTPase-activating protein that binds to both clathrin and the clathrin assembly protein (CALM). In the present study, SMAP2 is detected on the TGN in the pachytene spermatocyte to the round spermatid stages of spermatogenesis. Gene targeting reveals that SMAP2-deficient male mice are healthy and survive to adulthood but are infertile and exhibit globozoospermia.
View Article and Find Full Text PDFRetrograde transport is where proteins and lipids are transported back from the plasma membrane (PM) and endosomes to the Golgi, and crucial for a diverse range of cellular functions. Recycling endosomes (REs) serve as a sorting station for the retrograde transport and we recently identified evection-2, an RE protein with a pleckstrin homology (PH) domain, as an essential factor of this pathway. How evection-2 regulates retrograde transport from REs to the Golgi is not well understood.
View Article and Find Full Text PDFThe formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance.
View Article and Find Full Text PDFThe Runx1 transcription factor is abundantly expressed in naive T cells but rapidly downregulated in activated T cells, suggesting that it plays an important role in a naive stage. In the current study, Runx1(-/-)Bcl2(tg) mice harboring Runx1-deleted CD4(+) T cells developed a fatal autoimmune lung disease. CD4(+) T cells from these mice were spontaneously activated, preferentially homed to the lung, and expressed various cytokines, including IL-17 and IL-21.
View Article and Find Full Text PDFThe role of ArfGAP1 as a terminator or effector in COPi-vesicle formation has been the subject of ongoing discussions. Here, the discussion on the putative terminator/effector functions has been enlarged to include Arf GAP members involved in the formation of clathrin-coated vesicles. ACAP1, whose role has been studied extensively, enhances the recycling of endocytosed proteins to the plasma membrane.
View Article and Find Full Text PDF